K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đườg cao

nên AE*AC=AH^2

=>AD*AB=AE*AC

=>AD/AC=AE/AB

Xét ΔABC vuông tại A có tan B=AC/AB=căn 3

=>góc B=60 độ

=>góc C=30 độ

BC=căn AB^2+AC^2=8(cm)

\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)

\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

góc DAE chung

=>ΔADE đồng dạng với ΔACB

=>S ADE/S ACB=(AD/AC)^2

\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)

\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)

\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)

=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)