Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
BH=AB^2/BC=7,2cm
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7\(\simeq8,6\left(cm\right)\) và CD=80/7\(\simeq11,4\left(cm\right)\)
Lời giải:
1) Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$
$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)
$CH=BC-BH=8-4,5=3,5$ (cm)
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)
2. 3. Những phần này bạn làm tương tự như phần 1.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
b: XétΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot CH\)
c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)
nên AH=8cm
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE=8(cm)
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^BHA = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAC )
Vậy tam giác ABH~ tam giác CAH (g.g )
=> AH/CH=BH/AH => AH^2 = CH.BH
c, Ta có : AH = 2 . 4 = 8 cm
Xét tứ giác ADHE có :
^A = ^ADH = ^AEH = 900
Vậy tứ giác ADHE là hcn
=> AH = DE = 8 cm
d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)
Xét tam giác AHC và tam giác ABC
^AHC = ^BAC = 900
^HAC = ^B ( cùng phụ ^BAM )
Vậy tam giác AHC ~ tam giác BAC ( g.g)
=> AC / BC = HC/AC => AC^2 = HC ( HB + HC )
=> AC = 4 . 5 = 20 cm
Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Áp dụng hệ thức cạnh và đường cao :
\(BC.BH=AB^2=15^2=225\left(1\right)\)
Mặt khác : BC = BH + HC
\(\Rightarrow BC-BH=HC=16\)
\(\Rightarrow BH=BC-16\)
Thay vào ( 1 ) ta có :
\(BC.\left(BC-16\right)=225\)
\(\Leftrightarrow BC^2-16BC-225=0\)
\(\Leftrightarrow BC^2-25BC+9BC-225=0\)
\(\Leftrightarrow BC\left(BC-25\right)+9\left(BC-25\right)=0\)
\(\Leftrightarrow\left(BC-25\right)\left(BC+9\right)=0\)
Mà BC > 0 \(\Rightarrow BC=25\left(cm\right)\)
Áp dụng định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
Áp dụng hệ thức cạnh và đường cao :
\(AB.AC=BC.AH\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12\left(cm\right)\)
Chúc bạn học tốt !!!
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{12^2}{16}=9\left(cm\right)\)
BC=BH+CH=9+16=25(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)