Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
Mình đã giải xong câu a, b, c. Nhờ các bạn và quý thầy cô giải giúp câu d. Chỉ cần tóm tắt lời giải thôi cũng được ạ.
d) SADE = 1/2.AD.AE ; SABC = 1/2.AB.AC => SADE / SABC = AD.AE/AB.AC =1/4 (1)
Do tg ADE đồng dạng tg ABC => SADE / SABC = (DE/BC)2 = (AH/BC)2 (2)
Từ (1) và (2) => AH/BC = 1/2 hay AH = !/2 BC. Vậy AH là đường trung tuyến tg ABC, mà AH là đường cao => tg ABC cân tại A
câu d dùng tính chất đường phân giác trong tam giác là ra mà em!
EM là phân giác của tam giác ABE=>BM/AM=BE/AE
EN là phân giác của tam giác BEC =>CN/BN=EC/BE
=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1
a) Xét \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) do cùng phụ với góc HAB
suy ra: \(\Delta HBA~\Delta HAC\)
b) Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{BHA}=90^0\)
\(\widehat{B}\) CHUNG
suy ra: \(\Delta ABC~\Delta HBA\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Leftrightarrow\)\(AB^2=BH.BC\) (ĐPCM)
c) \(\Delta HBA~\Delta HAC\) \(\Rightarrow\) \(\frac{S_{HBA}}{S_{HAC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
HAY \(\frac{S_{HBA}}{32}=\frac{9}{16}\) \(\Rightarrow\)\(S_{HBA}=\frac{32.9}{16}=18\)
a) Xét tam giác ABC và tan giác HBA, ta có:
\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
=> Tam giác ABC ~ tam giác HBA (g-g)
=>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)
Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)
<=> AB . AB = BC . BH
<=> \(AB^2\)= BC . BH
b) Xét tam giác ABC và tam giác HAC, ta có:
\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)
\(\widehat{C}\)là góc chung
=> Tam giác ABC ~ tam giác HAC (g-g)
Mà tam giác ABC ~ tam giác HBA (cmt)
=> Tam giác HBA ~ tam giác HAC (tính chất)
=> \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)
Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)
<=> AH . AH = HB . HC
<=> \(AH^2\)= HB . HC
c) Tam giac ABC vuong tai A co:
\(BC^2\)= \(AB^2\)+\(AC^2\)(Pytago)
\(BC^2\)= \(6^2\)+\(8^2\)
\(BC^2\)= 100
<=> BC =\(\sqrt{100}\)(BC > 0)
<=> BC = 10 (cm)
Mat khac: BC = HB + HC
Tam giac HAC vuong tai H co:
\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)
\(8^2\)= HB . HC + \(HC^2\)
64 = HC (HB + HC)
64 = HC . BC
64 = HC . 10
=> HC = 6,4 (cm)
Ma BC = HB + HC
=> 10 = HB + 6,4
<=> HB = 3,6 (cm)
Ta co:
\(AH^2\)= HB . HC (cmt)
=>\(AH^2\)= 3,6 . 6,4
<=> \(AH^2\)= 23,04
<=> AH = \(\sqrt{23,04}\)(AH > 0)
<=> AH = 4,8 (cm)