K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

 Gọi T là giao điểm của CD và AB. Khi đó xét tứ giác ACHT, ta có:

O (trung điểm AC), D (giao điểm của 2 đường chéo) và B (giao điểm của 2 đường thẳng chứa 2 cạnh đối) thẳng hàng nên ACHT là hình thang. (bổ đề hình thang quen thuộc)

 \(\Rightarrow\) HT//AC \(\Rightarrow\) H, K, T thẳng hàng.

 Lại có \(\widehat{CEH}=\widehat{CAH}\) (góc nội tiếp cùng chắn cung AH)

 Mà \(\widehat{CAH}=\widehat{B}\) (cùng phụ với góc C)

 \(\Rightarrow\widehat{CEH}=\widehat{B}\)

 \(\Rightarrow\) Tứ giác BTEH nội tiếp \(\Rightarrow\widehat{BEH}=\widehat{BTH}\)

Mà \(\widehat{BTH}=90^o\) nên \(\widehat{BEH}=90^o\). Ta có đpcm.

28 tháng 11 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>CE\(\perp\)BE tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó;ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,D cùng nằm trên đường tròn đường kính AH

c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D

=>I là trung điểm của AH

Gọi giao điểm của AH với BC là M

AH\(\perp\)BC

nên AH\(\perp\)BC tại M

\(\widehat{BHM}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)

nên \(\widehat{BHM}=\widehat{IDH}\)

mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

OB=OD

=>ΔODB cân tại O

=>\(\widehat{OBD}=\widehat{ODB}\)

=>\(\widehat{ODH}=\widehat{DBC}\)

\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)

\(=\widehat{DBC}+\widehat{DCB}\)

\(=90^0\)

=>ID\(\perp\)DO

13 tháng 5 2021

ai giúp mình với đi huhu

13 tháng 5 2021

Mình vẽ hình trc nha

undefined

9 tháng 9 2017

a, ∆CHE' cân tại C =>  C E ' H ^ = C H E ' ^

DBHF' cân tại B =>  B F ' H ^ = B H F ' ^

Mà =>  C H E ' ^ = B H F ' ^  (đối đỉnh)

=>  C E ' H ^ = B F ' H ^

=> Tứ giác BCE'F'  nội tiếp đường tròn tâm (O)

b, Có  B F C ' ^ = B E ' C ^ = C H E ' ^ = C A B ^

Vậy A, F', E' cùng chắn BC dưới góc bằng nhau

=> 5 điểm B, F', A, E', C cùng thuộc một đường tròn tâm (O)

c, AF' = AE' (=AH) => AO là trung trực của EF => AO ^ E'F'. DHE'F' có EF là đường trung bình => EF//E'F'

=> AO ^ FE

d,  A F H ^ = A E H ^ = 90 0 => AFHE nội tiếp đường tròn đường kính AH. Trong (O): Kẻ đường kính AD, lấy I trung điểm BC

=> OI = 1 2 AH, BC cố định => OI không đổi

=> Độ dài AH không đổi

=> Bán kính đường tròn ngoại tiếp ∆AEF không đổi

7 tháng 3 2022

Cho hỏi là câu b tại sao có cái góc CAB bằng mấy cái kia vậy?

21 tháng 11 2019

Ta có  NHC = ABC (cùng phụ với HCB)                         (1)

Vì ABDC là tứ giác nội tiếp nên ABC = ADC                  (2)

Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra

∆ADC = ∆AEC (c.c.c) => ADC = AEC                           (3)

Tương tự ta có AEK = ADK

Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o

Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)

27 tháng 5 2018

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)

Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)

(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)

b) Xét ΔAMN và ΔABC có:

\(\widehat{BAC}\)chung

\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)

Do đó ΔAMN ~ ΔABC

Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)

hay AM.AC=AN.AB

Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)

Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)

Suy ra tứ giác ANHM nội tiếp

Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)

\(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)

    \(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)

Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)

Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)

c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)

Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)

Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)

Do đó tứ giác HMCD nội tiếp

Suy ra \(\widehat{HMD}=\widehat{HCD}\)

\(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)

Nên \(\widehat{HMD}=\widehat{HMN}\)

Vậy MH là phân giác \(\widehat{NMD}\)

Mà MH vuông góc AM (gt)

Nên AM là phân giác ngoài

Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)

hay IH.AD=AH.ID

a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)

→AFAD=AHAB→AF.AB=AH.AD

Tương tự AH.AD=AE.AC→AF.AB=AE.AC

b.Ta có  :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o

→AEHF,AEDB,FHDB nội tiếp

→ˆHFE=ˆFAE=ˆHBD=ˆHFD

→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF

→HIHD=FIFD=AIAD

→IH.AD=AI.DH

31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt