Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H
Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))
Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao

a) Xét tam giác \(HBA\)và tam giác \(ABC\):
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\)chung
Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).
b) Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(Định lí Pythagore)
\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).
\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)
\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)
(Bạn tự vẽ hình nhé).
a,Xét 2 tam giác vuông HBA và ABC có:
Góc H= góc A (=90 độ).
AB chung.
=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).
b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:
BC2= AB2 + AC2
Hay BC2 = 62 + 82
= 36 + 64
= 100
=> BC= 10 (cm).
Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)
=> BH/AB = AB/ BC = AH/AC
Hay BH/6 = 6/10 = AH/8
=> BH = 6.6/10 = 3,6 (cm).
AH= 8.6/10 = 4,8 (cm).
Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.

a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BH\cdot BC=BA^2\)
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)
=>\(CH\cdot CB=CA^2\)
ΔCHA~ΔCAB
=>\(\dfrac{HA}{AB}=\dfrac{CA}{CB}\)
=>\(AH\cdot BC=AB\cdot AC\)
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{AB^2+AC^2}{\left(AB\cdot AC\right)^2}=\dfrac{BC^2}{\left(AH\cdot BC\right)^2}=\dfrac{1}{AH^2}\)
Cách giải:
\(A B^{2} + A C^{2} = B C^{2}\)
\(A B^{2} = A H^{2} + B H^{2} \Rightarrow B H^{2} = A B^{2} - A H^{2}\)
\(A C^{2} = A H^{2} + C H^{2} \Rightarrow C H^{2} = A C^{2} - A H^{2}\)
\(B H^{2} + C H^{2} = \left(\right. A B^{2} - A H^{2} \left.\right) + \left(\right. A C^{2} - A H^{2} \left.\right)\) \(B C^{2} = A B^{2} + A C^{2} - 2 A H^{2}\)
Nhưng từ định lý Pythagoras ta đã có \(B C^{2} = A B^{2} + A C^{2}\), vậy ta có:
\(A B^{2} + A C^{2} = A B^{2} + A C^{2} - 2 A H^{2}\) \(2 A H^{2} = 0 \Rightarrow A H^{2} = \frac{A B^{2} \cdot A C^{2}}{A B^{2} + A C^{2}}\)
\(\frac{1}{A H^{2}} = \frac{1}{A B^{2}} + \frac{1}{A C^{2}}\)
Kết luận:
Như vậy, ta đã chứng minh được điều cần chứng minh.