Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB : AC = 4 : 5 ⇔ A B 4 = A C 5 ⇒ A B 2 16 = A C 2 25 = A B 2 + A C 2 16 + 25 = 41 41 = 1
(Vì theo định lý Py-ta-go ta có A B 2 + A C 2 = B C 2 ⇔ A B 2 + A C 2 = ( 41 ) 2 = 41 )
Nên A B 2 16 = 1 ⇒ A B 2 = 16 ⇒ AB = 4; A C 2 25 = 1 ⇒ AC = 5
Theo hệ thức lượng trong tam giác vuông ABC ta có:
A C 2 = C H . B C ⇒ C H = A C 2 B C = 25 41 ≈ 3 , 9
Vậy CH ≈ 3,9
Đáp án cần chọn là: D
ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :
AC2 = BC2 - AB2
AC2 = √52−32=3(AC>0)52−32=3(AC>0)
Ta có : SABC=12AB.ACSABC=12AB.AC
Mà : SABC=12AH.BCSABC=12AH.BC
⇒ 12AB.AC=12AH.BC12AB.AC=12AH.BC
⇔ AH = AB.ACBC=3.45=2,4(cm)
ACBH
a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881
=> AB = √881881
Lại có : BH.HC = AH2
<=> HC.25 = 162
<=> HC.25 = 256
<=> HC = 256 : 25 = 10,24
Ta có : BC = HC + BH = 10,24 + 25 = 35,24
Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576
=> AC = √360,8576
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=64-36=28\)
hay \(AC=2\sqrt{7}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{8}=\dfrac{36}{8}=4.5\left(cm\right)\\CH=\dfrac{28}{8}=3.5\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=6^2-4.5^2=15.75\left(cm\right)\)
hay \(AH=\dfrac{3\sqrt{7}}{2}\left(cm\right)\)
https://alfazi.edu.vn/question/5b8a626cb067113822bfbc62
vào đây để nhận phần quà hấp dẫn nha
và nói là Nick lâm mời nhé
cám ơn và hậu tạ