\(E\) BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

Hình vẽ:

Góc với đường tròn

Lời giải:

a)

HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900

Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)

b)

Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^

Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)

⇒AMNˆ=ACBˆ⇒AMN^=ACB^

Xét tam giác AMNAMN và ACBACB có:

{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)

⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)

c)

Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)

ACBˆ=AMNˆACB^=AMN^ (cmt)

⇒AEBˆ=AMNˆ⇒AEB^=AMN^

⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^

⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp

⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)

⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.

~Hok tốt~

Mình làm thế này đúng không ạ

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

https://h.vn/hoi-dap/question/38145.html

bạn xem ở đây nhé

a) Ta có: tam giác ABC cân tại A nên đường cao AH còn là đường trung tuyến 
Suy ra: H là trung điểm của BC 
BH = BC/2 = 3cm 
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm 

b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác 
Suy ra: G thuộc đường trung tuyến kẻ từ A 
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH 
Vậy: A,G,H thẳng hàng 

c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác 
Suy ra: góc BAG = góc CAG 
Xét tam giác ABG và tam giác ACG có: 
AB = AC (tam giác ABC cân tại A) 
góc BAG = góc CAG (cm trên) 
AG chung 
Vậy tam giác ABG = tam giác ACG (c-g-c) 
Suy ra: góc ABG = góc ACG