K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

 Ta thấy 1 cặp tam giác đồng dạng quen thuộc là \(\Delta HAB~\Delta HCA\), từ đó suy ra \(\dfrac{S_{HAB}}{S_{HCA}}=\left(\dfrac{AB}{AC}\right)^2\). Mà ta lại có \(\dfrac{S_{HAB}}{S_{HCA}}=\dfrac{HB}{HC}\) (2 tam giác có chung đường cao hạ từ A) nên suy ra đpcm.

1 tháng 8 2021

Theo định lí Pitago

Xét tam giác ABH vuông tại H => AB2 - HB2 = AH2

Xét tam giác ACH vuông tại H => AC2 - HC2 = AH2

=> AB2 - HB2 = AC2 - HC2=AH2

=> AB2 + HC2 = AC2 + HB2

20 tháng 7 2021

A B C H M N

Ta có : \(AB^2=BH.BC\)

\(AC^2=CH.BC\)

Chia vế với vế ta được : 

\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)

20 tháng 7 2021

Tham khảo:undefinedundefined

29 tháng 10 2023

a: BC=BH+CH

=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=3,6\cdot6,4=23,04\)

=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=4,8^2+6,4^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)

b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)

Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

Xét ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot NC=HN^2\)

\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)

c: AK\(\perp\)MN

=>\(\widehat{ANM}+\widehat{KAC}=90^0\)

mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)

nên \(\widehat{AHM}+\widehat{KAC}=90^0\)

mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{B}+\widehat{KAC}=90^0\)

mà \(\widehat{B}+\widehat{KCA}=90^0\)

nên \(\widehat{KAC}=\widehat{KCA}\)

=>KA=KC

\(\widehat{KAC}+\widehat{KAB}=90^0\)

\(\widehat{KCA}+\widehat{KBA}=90^0\)

mà \(\widehat{KAC}=\widehat{KCA}\)

nên \(\widehat{KAB}=\widehat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

3 tháng 7 2021

a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)

Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)

b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274

3 tháng 7 2021

a) Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.CB\)

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)

b) Áp dụng hệ thức lượng trong tam giác vuông có:

\(BH^2=BE.BA\)

\(CH^2=CF.CA\)

\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ