Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(BC\cdot BE\cdot CF\)
\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{AB\cdot AC}{AH}\cdot\dfrac{AH^4}{AB\cdot AC}=AH^3\)
a: \(AH\cdot BC=AB\cdot AC\)
nên AH/AC=AB/BC=3/5
=>BC=25cm
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
\(HB=\dfrac{225}{25}=9\left(cm\right)\)
HC=25-9=16cm
b: \(BC\cdot BE\cdot CF\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
A B C H E F
a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC
\(AB.BE=BH^2;AC.CF=CH^2\)
\(AB^2=BH.BC;AC^2=CH.BC\)
=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)
<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)
<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng
Vậy ta có điều phải chứng minh là đúng
b)
Ta có: \(AH^2=BH.CH\)
=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)
=> \(AH^3=BC.BE.CF\)
c)
Xét tam giác vuông BEH và tam giác vuông HFC
có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC
=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)
=> \(AH^3=BC.HE.HF\)
a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
\(\Rightarrow AE.AB=AF.AC\)
b)(\(\dfrac{BE}{CF}\) chứ)
Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c)Áp dụng định lý Thales có:
\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)
\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)
\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)
\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)
\(\Leftrightarrow BC^..BE.BF=AH^3\)
Vậy ....
a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)
Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)
Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)
Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)
Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)
Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)
\(\Rightarrow AH^3=BE.CF.BC\)
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)
EH // AC (EH _I_ AB và AC _I_ AB)
\(\Rightarrow\dfrac{BE}{AB}=\dfrac{BH}{BC}\Rightarrow BE=\dfrac{BH}{BC}\times AB\) (hệ quả của định lý Talet)
FH // AB (FH _I_ AC và AB _I_ AC)
\(\Rightarrow\dfrac{CF}{AC}=\dfrac{CH}{BC}\Rightarrow CF=\dfrac{CH}{BC}\times AC\) (hệ quả của định lý Talet)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:
(+) \(AH\times BC=AB\times AC\Rightarrow AH=\dfrac{AB\times AC}{BC}\)
(+) \(AH^2=BH\times CH\)
Ta có:
\(BC\times BE\times CF=BC\times\dfrac{BH}{BC}\times AB\times\dfrac{CH}{BC}\times AC\)
\(=\left(BH\times CH\right)\times\left(\dfrac{AB\times AC}{BC}\right)=AH^2\times AH=AH^3\left(\text{đ}pcm\right)\)