Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)BC=25cm
AH=12cm
HC=16cm
b)áp dụng kiến thức 2 tam giác đồng dạng
cụ thể làΔABF vàΔCAE
c)
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HC=AC^2/BC=20^2/25=16cm
Xét ΔACB vuông tại A có sin ACB=AB/BC=3/5
=>góc ACB=37 độ
b: Xét ΔHAB có HI/HA=HK/HB
nên IK//AB
=>KI vuông góc AC
Xét ΔCAK có
KI,AH là đường cao
KI cắt AH tại I
=>I là trực tâm
c: Xét ΔKBA và ΔIAC có
góc KBA=góc IAC
AB/AC=KB/IA=HB/HA
=>ΔKBA đồng dạng với ΔIAC