K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=BH^2\)

hay \(BE=\dfrac{BH^2}{BA}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)

 

7 tháng 7 2023

Tại sao BH2 bằng với AB4 thế ạ?

 

e: BE*BC^2

=BH^2/BA*BC^2

=(BH*BC)^2/BA

=BA^4/BA=BA^3

b: \(\dfrac{BE}{CF}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{HC^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

c: \(BC\cdot BE\cdot CF\)

\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}\)

\(=AH^4\cdot\dfrac{BC}{AH\cdot BC}=AH^3\)

10 tháng 8 2020

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

10 tháng 8 2020

đề kiểu gì thế ?

Điểm E; Điểm F; Điểm H đây vậy bạn ơi

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

Đề sai rồi bạn

NV
11 tháng 3 2022

Hệ thức lượng: \(AH^2=BH.CH\)

Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)

Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)

 Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)

Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)

\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)

\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)

\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)

\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)

\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)

\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

NV
11 tháng 3 2022

undefined

3 tháng 7 2021

a)Áp dụng hệ thức lượng trong tam giác vuông có:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

b)(\(\dfrac{BE}{CF}\) chứ)

Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c)Áp dụng định lý Thales có:

\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)

\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)

\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)

\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)

\(\Leftrightarrow BC^..BE.BF=AH^3\) 

Vậy ....

3 tháng 7 2021

a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)

Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)

Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)

Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)

Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)

\(\Rightarrow AH^3=BE.CF.BC\)

 

 

16 tháng 7 2021

a) đề phải là \(\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

Ta có: \(\dfrac{EB}{FC}.\dfrac{AB}{AC}=\dfrac{BE.BA}{AC.CF}=\dfrac{BH^2}{CH^2}=\left(\dfrac{BH}{CH}\right)^2=\left(\dfrac{BH.BC}{CH.BC}\right)^2\)

\(=\left(\dfrac{AB^2}{AC^2}\right)^2=\dfrac{AB^4}{AC^4}\Rightarrow\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow AH^2=EF^2=EH^2+HF^2\)

Ta có: \(3AH^2+BE^2+CF^2=\left(BE^2+EH^2\right)+\left(CF^2+FH^2\right)+2AH^2\)

\(=BH^2+CH^2+2.BH.CH=\left(BH+CH\right)^2=BC^2\)