K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là: a) Hình chữ nhật. b) Hình thoi. c) Hình vuông. Bài 2. Cho tam giác...
Đọc tiếp

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là:

a) Hình chữ nhật.

b) Hình thoi.

c) Hình vuông.

Bài 2. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì?

b) Tứ giác AKMB là hình gì?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi.

ĐS: a) AMCK là hình chữ nhật b) AKMB là hình bình hành c) Không.

Bài 3. Cho tam giác ABC vuông tại A. Về phia ngoài tam giác, vẽ các hình vuông ABDE, ACGH.

a) Chứng minh tứ giác BCHE là hình thang cân.

b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng qui.

Bài 4. Cho hình thang cân ABCD với AB // CD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì?

b) Cho biết diện tích tứ giác ABCD bằng \(30m^2\). Tính diện tích tứ giác MNPQ.

Bài 5. Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.

a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.

b) Các tứ giác AEMC, AEBM là hình gì?

c) Cho BC = 4cm. Tính chu vi tứ giác AEBM.

d) Tam giác vuông thoả điều kiện gì thì AEBM là hình vuông.

Bài 6. Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.

a) Chứng minh AP = PQ = QC.

b) Tứ giác MPNQ là hình gì?

c) Xác định tỉ số \(\frac{CA}{CD}\) để MPNQ là hình chữ nhật.

d) Xác định góc ACD để MPNQ là hình thoi.

e) Tam giác ACD thoả mãn điều kiện gì để MPNQ là hình vuông.

Bài 7. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau ở K.

a) Tứ giác OBKC là hình gì?

b) Chứng minh AB = OK.

c) Tìm điều kiện của hình thoi ABCD để OBKC là hình vuông.

ĐS: a) OBKC là hình chữ nhật c) ABCD là hình vuông.

Bài 8. Cho hình bình hành ABCD có BC = 2AB và góc A =600. Gọi E, F lần lượt là trung điểm của BC và AD.

a) Tứ giác ECDF là hình gì?

b) Tứ giác ABED là hình gì?

c) Tính số đo của góc AED.

Bài 9. Cho hình thang ABCD (AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là trung điểm của EF. Qua O vẽ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N.

a) Tứ giác EMFN là hình gì?

b) Hình thang ABCD có thêm điều kiện gì để EMFN là hình thoi.

c) Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông.

Bài 10. Cho tam giác ABC vuông tại A với AB = AC = a.

a) Lấy điểm D trên cạnh AC và điểm E trên cạnh AB sao cho AD = AE. Các đường thẳng vuông góc với EC vẽ từ A và D lần lượt cắt cạnh BC ở K và L. Chứng minh BK = KL.

b) Một hình chữ nhật APMN thay đổi có đỉnh P trên cạnh AB, đỉnh N trên cạnh AC và có chu vi luôn bằng \(2a\). Điểm M di chuyển trên đường nào?

c) Chứng minh khi hình chữ nhật APMN thay đổi thì đường vuông góc vẽ từ M xuống đường chéo PN luôn đi qua một điểm cố định.

ĐS: b) M di chuyển trên cạnh BC c) HM đi qua điểm I cố định (với ACIB là hình vuông).

Bài 11. Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.

a) Chứng minh tam giác AEF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.

c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.

Bài 12. Cho hình bình hành ABCD có AD = 2AB, góc A=600. Gọi E và F lần lượt là trung điểm của BC và AD.

a) Chứng minh AE\(\perp\)BF.

b) Chứng minh tứ giác BFDC là hình thang cân.

c) Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d) Chứng minh ba điểm M, E, D thẳng hàng.

Bài 13. Cho tam giác ABC vuông tại A có \(\widehat{BAC}=\)900. Kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a) Tính số đo các góc BAD, DAC

b) Chứng minh tứ giác ABCD là hình thang cân.

c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

Bài 14. Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM.

a) Tứ giác MNPQ là hình gì?

b) Tứ giác MDPB là hình gì?

c) Chứng minh: AK = KL = LC.

Bài 15. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

a) Các tứ giác AEFD, AECF là hình gì?

b) Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c) Hình bình hành ABCD nói trên có thêm điều kiện gì để EMFN là hình vuông?

Bài 16. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

b) Chứng minh rằng H đối xứng với K qua A.

c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

23
15 tháng 12 2016

bạn có nikc face ko. vô đó mk gửi bài qua cho

28 tháng 7 2017

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

31 tháng 5 2020

Phần a là HBA ~ ABC chứ nhỉ?

a, Xét tam giác HBA và tam giác ABC có:

góc BHA = góc BAC = 90o (ABC vg tại A và AH là đường cao)

góc B chung

\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)

b, Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cmt) (1)

Tương tự ta cx có: \(\Delta\)HAC ~ \(\Delta\)ABC (2)

Từ (1) và (2) \(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)HAC

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay AH2 = CH . BH (đpcm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\) hay AB2 = BC . BH (đpcm)

\(\Delta\)HAC ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AC}{BC}=\frac{HC}{AC}\) hay AC2 = BC . HC (đpcm)

c, Xét tam giác ABC vg tại A có: BA\(\perp\)CA

\(\Rightarrow\) BC2 = AB2 + AC2 (định lí Pytago)

BC2 = 152 + 202

BC2 = 625

BC = \(\sqrt{625}\) = 25 (cm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cmt)

\(\Rightarrow\) \(\frac{AB}{BC}=\frac{BH}{AB}\)

hay \(\frac{15}{25}=\frac{BH}{15}\) \(\Rightarrow\) BH = \(\frac{15^2}{25}\) = 9 (cm)

Vì BH = 9 cm nên CH = 25 - 9 = 16 (cm)

\(\Delta\)HBA ~ \(\Delta\)HAC (cmt)

\(\Rightarrow\) \(\frac{AH}{CH}=\frac{BH}{AH}\) hay \(\frac{AH}{16}=\frac{9}{AH}\)

\(\Rightarrow\) \(AH^2=16\cdot9=144\)

\(\Rightarrow\) \(AH=\sqrt{144}=12\) (cm)

d, Xét tam giác ABC có: BD là tia p/g của góc ABC (gt)

\(\Rightarrow\) \(\frac{AD}{AB}=\frac{CD}{BC}\) (t/c đường p/g của tam giác)

hay \(\frac{20-CD}{15}=\frac{CD}{25}\)

\(\Leftrightarrow\) \(\frac{5\left(20-CD\right)}{75}=\frac{3CD}{75}\)

\(\Rightarrow\) 5(20 - CD) = 3CD

\(\Leftrightarrow\) 100 - 5CD = 3CD

\(\Leftrightarrow\) 3CD + 5CD = 100

\(\Leftrightarrow\) 8CD = 100

\(\Leftrightarrow\) CD = 12,5 (cm)

\(\Rightarrow\) AD = 20 - 12,5 = 7,5 (cm)

e, Ko thể có 2 điểm H được nên mk gọi D vuông góc với BC tại M nha!

Xét tam giác CMD và tam giác CAB có:

góc CMD = góc CAB = 90o (DM \(\perp\) BC và \(\Delta\)ABC vg tại A theo gt)

góc C chung

\(\Rightarrow\) \(\Delta\)CMD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\frac{CM}{CA}=\frac{CD}{CB}\) hay CM . CB = CD . CA (đpcm)

Chúc bn học tốt!! (Dài quá :vvv)

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\) chung

Do đó: ΔHBA∼ΔABC(g-g)(1)

Xét ΔHAC và ΔABC có

\(\widehat{AHC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\) chung

Do đó: ΔHAC∼ΔABC(g-g)(2)

Từ (1) và (2) suy ra ΔHBA∼ΔHAC(đpcm)

b) Ta có: ΔHBA∼ΔABC(cmt)

\(\frac{HB}{AB}=\frac{BA}{BC}=\frac{HA}{AC}=k_1\)(tỉ số đồng dạng)

hay \(AB^2=BC\cdot BH\)(đpcm)

Ta có: ΔHAC∼ΔABC(cmt)

\(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}=k_2\)(tỉ số đồng dạng)

hay \(AC^2=BC\cdot HC\)(đpcm)

Ta có: ΔHBA∼ΔHAC(cmt)

\(\frac{HB}{HA}=\frac{HA}{HC}=\frac{BA}{AC}=k\)(tỉ số đồng dạng)

hay \(HA^2=HB\cdot HC\)(đpcm)

c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(BC^2=15^2+20^2=625\)

hay \(BC=\sqrt{625}=25cm\)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

\(15^2=25\cdot BH\)

\(BH=\frac{15^2}{25}=\frac{225}{25}=9cm\)

Ta có: \(\frac{HA}{AB}=\frac{AC}{BC}=\frac{HC}{AC}\)(cmt)

\(\frac{HA}{15}=\frac{20}{25}\)

\(HA=\frac{15\cdot20}{25}=\frac{300}{25}=12cm\)

Vậy: BC=25cm; BH=9cm; HA=12cm

d) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{AD}{AB}=\frac{CD}{CB}\)(tính chất đường phân giác của tam giác)

hay \(\frac{AD}{15}=\frac{CD}{25}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

hay AD+CD=20cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{AD}{15}=\frac{CD}{25}=\frac{AD+CD}{15+25}=\frac{20}{40}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{AD}{15}=\frac{1}{2}\\\frac{CD}{25}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{15\cdot1}{2}=7,5cm\\CD=\frac{25\cdot1}{2}=12,5cm\end{matrix}\right.\)

Vậy: AD=7,5cm; CD=12,5cm

e) Đề sai rồi bạn

21 tháng 5 2019

Ôn tập : Tứ giác

a, Vì ΔDEF vuông tại D⇒ \(\widehat{FDE}=90^0\)

hay \(\widehat{ADB}=90^0\)

Vì DK là đường cao của ΔDEF

⇒ DK ⊥ EF

\(\widehat{DKE}=\widehat{DKF}=90^0\)

Vì KA ⊥ DE ⇒ \(\widehat{DAK}=\widehat{A_1}=90^0\)

Vì KB ⊥ DF ⇒ \(\widehat{DBK}=\widehat{B_1}=90^0\)

Tứ giác ADBK có\(\left\{{}\begin{matrix}\widehat{ADB}=90^0\\\widehat{DAK}=90^0\\\widehat{DBK}=90^0\end{matrix}\right.\)

⇒ Tứ giác ADBK là hình chữ nhật

⇒ AB = DK (hai đường chéo trong hình chữ nhật)(đpcm)

b, Vì C đối xứng với D qua I

⇒ I là trung điểm của CD

Tứ giác DFCK có

\(\left\{{}\begin{matrix}\text{I là trung điểm của FK}\\\text{I là trung điểm của CD}\\\text{Đường chéo FK và CD}\end{matrix}\right.\)

⇒ Tứ giác DFCK là hình bình hành

⇒ DF // CK (đpcm)

c,

Vì tứ giác ADBK là hình chữ nhật

⇒ AK // BD

⇒ AK // DF

Ta có \(\left\{{}\begin{matrix}\text{DF // CK }\\\text{AK // DF}\end{matrix}\right.\)

⇒ A, K, C thẳng hàng (tiên đề Ơclit)

Vì DF // CK

⇒ BF // AC

⇒ Tứ giác BFAC là hình thang (1)

Kẻ thêm: Từ F kẻ FN ⊥ AC

\(\widehat{CNF}=\widehat{KNF}=90^0\)

Vì tứ giác ADBK là hình chữ nhật

\(\widehat{AKB}=90^0\)

\(\left\{{}\begin{matrix}\text{FN ⊥ AC}\\\text{BF // AC}\end{matrix}\right.\)⇒ BF ⊥ FN

\(\widehat{BFN}=90^0\)

Tứ giác BFNK có \(\left\{{}\begin{matrix}\widehat{BFN}=90^0\\\widehat{B_1}=90^0\\\widehat{KNF}=90^0\end{matrix}\right.\)

⇒ Tứ giác BFNK là hình chữ nhật

⇒ FN = BK (2 đường chéo)

Vì tứ giác DFCK là hình bình hành

⇒ CF = DK

mà AB = CK

⇒ AB = CF

ΔABK và ΔCFN có \(\left\{{}\begin{matrix}\text{AB = CF}\\\widehat{CNF}=\widehat{AKB}=90^0\\\text{FN = BK}\end{matrix}\right.\)

⇒ ΔABK ~ ΔCFN (ch.cgv)

\(\widehat{A_2}=\widehat{ACF}\) (2)

Từ (1), (2) ⇒ Tứ giác BFCA là hình thang cân (đpcm)

d, Ta có

\(\left\{{}\begin{matrix}\text{Tứ giác ADBK là hình chữ nhật}\\\text{Đường chéo AB và DK}\\\text{AB cắt DK tại O}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\text{O là trung điểm của AB }\\\text{O là trung điểm của DK }\end{matrix}\right.\)

Vì I là trung điểm của FK

⇒ DI là đường trung tuyến của ΔCDK

Vì O là trung điểm của DK

⇒ FO là đường trung tuyến của ΔCDK

ΔCDK có

\(\left\{{}\begin{matrix}\text{DI là đường trung tuyến của ΔCDK}\\\text{FO là đường trung tuyến của ΔCDK}\\\text{DI cắt FO tại H}\end{matrix}\right.\)

⇒ H là trọng tâm của ΔCDK

⇒ DH = \(\frac{2}{3}\)DI (Trọng tâm của tam giác cách đều mỗi đỉnh một khoảng bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó) (3)

Vì I là trung điểm của CD

⇒ DI = \(\frac{1}{2}\)CD (4)

Thay (4) vào (3), ta có

DH = \(\frac{2}{3}.\frac{1}{2}\)CD

⇒ DH = \(\frac{1}{3}\)CD

⇒ CD = 3DH (đpcm)

Chúc bạn học tốt !!!

23 tháng 8 2019

Tham Khảo:

Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết BH = 4cm ; CH = 9cm.

23 tháng 8 2019

Câu 1

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng a, Tứ giác AIHk là hình chữ nhật b, \(\Delta AKI\) \(\sim\Delta ABC\) c, Tính diện tích \(\Delta ABC\) Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm a, C/m : \(\Delta ABE\sim\Delta DEC\) b,...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

0
Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH a) tính BC b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB c) chứng minh AB2=BH.BC. tính BH,HC d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB Bài 2: cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC b) chứng minh BC2=HC.DC c) chứng minh \(\Delta...
Đọc tiếp

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH

a) tính BC

b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB

c) chứng minh AB2=BH.BC. tính BH,HC

d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB

Bài 2:

cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK

a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC

b) chứng minh BC2=HC.DC

c) chứng minh \(\Delta AKD\sim\Delta BHC\)

d)cho BC=15cm, DC=25cm. Tính HC, HD

e)tính diện tích hình thang ABCD

Bài 3:

cho\(\Delta\)ABC các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. gội M là trung điểm của BC

a) chứng minh \(\Delta ADB\sim\Delta AEC\)

b)chứng minh HE.HC=HD.HB

c) chứng minh H,K,M thẳng hàng

d)\(\Delta ABC\) phải có điều kiện nào thì tứ giác BHCK là hình thoi? hình chữ nhật?

1

Bài 1:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC đồg dạg với ΔHBA

c: Xét ΔaBC vuông tại A có AHlà đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)
=>CH=6,4cm

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ só bằng nhau ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm

Bài 3: 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

DO đó: ΔHBA\(\sim\)ΔABC

SUy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)