\(HAB=MA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

B A C M H D E I K \(a\)

\(\Delta ABC\) vuông tại A có :

\(\widehat{B}+\widehat{C}=90^0\)

\(\Delta ABH\) vuông tại H có :

\(\widehat{HAB}+\widehat{B}=90^0\)

\(\Rightarrow\widehat{HAB}=\widehat{C}\) \(\left(2\right)\)

\(Xét\) \(\Delta ABC\) vuông tại A có :

Có AM là đường trung tuyến ứng với cạnh huyền BC (gt)

\(\Rightarrow AM=\dfrac{1}{2}BC\) ( trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền )

\(\Rightarrow AM=CM\)

\(\Rightarrow\Delta ACM\) cân tại M

\(\Rightarrow\widehat{C}=\widehat{MAC}\) \(\left(2\right)\) ( 2 góc đáy)

\(Từ\) \(^{\left(1\right)}và^{\left(2\right)}\Rightarrow\widehat{HAB}=\widehat{MAC}\left(đpcm\right)\)

\(b\ \)

Gọi giao điểm của AH và DE là I , giao điểm của AM và DE là K

TỨ giác ADHE có :

\(\cdot\) AH ⊥BC ( AH là đường cao)

\(\cdot\) HE ⊥ AC ( E là chân đường vuông góc kẻ từ H đến AC)

\(\cdot HD\perp AB\) ( D là chân đường vuông góc kẻ từ H đến AB)

\(\Rightarrow ADHE\) là hình chữ nhật

Mà I là giao điểm của AH và DE

Theo tính chất hình chữ nhật

\(\Rightarrow I\) là trung điểm AH , DE và AH = DE

\(\Rightarrow AI=IE\)

\(\Rightarrow\Delta AIE\) cân tại I

\(\Rightarrow\widehat{IAE}=\widehat{IEA}\) ( 2 góc đáy)

Mà đồng thời ta có \(^{\left(2\right)}\)

\(\Rightarrow\widehat{IEA}+\widehat{MAC}=\widehat{IAE}+\widehat{C}\)

Trong \(\Delta ACH\) vuông tại H có :

\(\widehat{IAE}+\widehat{C}=90^0\) ( trong tam giác vuông 2 góc nhọn phụ nhau)

\(\Rightarrow\widehat{IEA}+\widehat{MAC}=90^0\)

\(\Rightarrow AK\perp DE\) hay \(AM\perp DE\left(đpcm\right)\)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a,Ta có :

\(AH\perp BC\left(GT\right)\Rightarrow\widehat{HAB}+\widehat{B}=90^o\)

Mà \(\widehat{B}+\widehat{C=90^o}\)( Trong tam giác vuông 2 góc nhọn phụ nhau )

\(\Rightarrow\widehat{HAB}=\widehat{C}\left(1\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\)có :

 AM là trung tuyến ứng với cạnh huyền BC ( GT )

\(\Rightarrow AM=MC=\frac{1}{2}BC\)( Tính chất )

Vì \(AM=MC\)

\(\Rightarrow\Delta AMC\)cân tại M ( Định nghĩa )

\(\Rightarrow\widehat{MAC}=\widehat{C}\)( Tính chất ) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{HAB}=\widehat{MAC}\left(DPCM\right)\)

27 tháng 9 2018

a)Xét tam giác HAB vuông tại A=>góc HAB=90o - B(1)

Xét tam giác vuông ABC có trung tuyến AM ứng với cạnh huyền BC

=>MA=1/2BC=>MA=MC

=>tam giác CMA cân tại M

=>góc MCD=góc MAC

mà góc MCA=90o-B(Xét tam giác vuông ABC)

=>góc MAC=90o-B(2)

Từ (1) và (2) ta có góc HAB=góc MAC

a) Xét ∆ vuông ABC có 

AM là trung tuyến 

=> AM = BM = CM 

=> ∆AMC cân tại M 

=> MAC = MCA 

Xét ∆ABH có : 

BHA + BAH + ABH = 180° 

=> BAH + ABH = 90° 

Xét ∆ABC có : 

ABC + BCA + BAC = 180° 

=> ABC + ACB = 90° 

=> BAH = MCA 

Mà MAC = MCA (cmt)

=> BAH = MAC 

b) Gọi I là giao điểm DE và AH 

Xét tứ giác DHEA có : 

BAC = 90° (gt)

MDA = 90° ( MD\(\perp\)AB )

HEA = 90° ( HE\(\perp\)AC)

=> DHEA là hình chữ nhật 

=> I là trung điểm DE và HA 

=> DI = IA 

=> ∆IDA cân tại I

=> IDA = IAD (1)

Vì MAC = MCA (2) (cmt)

Ta có : 

DAI + MAC = 90° 

MCA + MAC = 90° 

=> DAI = MCA ( cùng phụ với MAC )(3)

Từ (1) (2)(3) 

=> DAI = MAC = MCA 

Vì I là trung điểm DE 

=> ∆IAE cân tại I 

=> IAE = IEA 

Gọi giao điểm DE,AM là O 

Xét ∆ADE có : 

DAE + ADE + DEA = 180° 

=> ADE + DEA = 90° .

Mà IAE = IEA (cmt)

MAC = ADI (cmt)

=> MAE + IEA = 90° 

Xét ∆IAE có : 

IAE + IEA + AIE = 180° 

=> AIE = 90° 

Hay AM \(\perp\)DE(dpcm)

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo Vy phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

8 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác ADHE, ta có:

∠ A = 90 0  (gt)

∠ (ADH) =  90 0  (vì HD ⊥ AB)

∠ (AEH) =  90 0  (vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).

+ Xét ∆ ADH và  ∆ EHD có :

DH chung

AD = EH ( vì ADHE là hình chữ nhật)

∠ (ADN) =  ∠ (EHD) =  90 0

Suy ra:  ∆ ADH =  ∆ EHD (c.g.c)

⇒  ∠ A 1 =  ∠ (HED)

Lại có:  ∠ (HED) +  ∠ E 1 =  ∠ (HEA) =  90 0

Suy ra:  ∠ E 1 +  ∠ A 1 =  90 0

∠ A 1 = ∠ A 2 (chứng minh trên) ⇒  ∠ E 1 +  ∠ A 2 =  90 0

Gọi I là giao điểm của AM và DE.

Trong  ∆ AIE ta có:  ∠ (AIE) = 180o – ( ∠ E 1 +  ∠ A 2 ) = 180 0  -  90 0  =  90 0

 

Vậy AM ⊥ DE.