Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có
ΔAFH nội tiếp đường tròn(A,F,H\(\in\)(O))
AH là đường kính(gt)
Do đó: ΔAFH vuông tại F(Định lí)
Xét (O) có
ΔAEH nội tiếp đường tròn(A,E,H\(\in\)(O))
Do đó: ΔAEH vuông tại E(Định lí)
Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\left(\widehat{BAC}=90^0\right)\)
\(\widehat{AEH}=90^0\)(ΔAEH vuông tại E)
\(\widehat{AFH}=90^0\)(ΔAHF vuông tại F)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

a, Ta có : \(\widehat{HEB}=\widehat{HFC}=1v\)( góc nội tiếp chắn nửa đường tròn )
\(\Rightarrow\widehat{HEA}=\widehat{HFA}=\widehat{EAF}=1v\)
\(\Rightarrow\)Tứ giác AEHF là hình chữ nhật
b, Gọi O và O' lần lượt là trung điểm của HB và HC .
Ta có O là trung tâm đường tròn đường kính HB và O' là tâm dường tròn đường kính HC
\(\Rightarrow\widehat{HEO}=\widehat{EHO}\)( Tam giác EHO cân)
\(\widehat{FEH}=\widehat{FHE}\) ( Tam giác IHE cân )
\(\Rightarrow\widehat{FEH}+\widehat{HEO}=\widehat{FHE}+\widehat{EHO}=90^0\Rightarrow OE\perp EF\)
Vậy EF là tiếp tuyến của đường tròn (O)
Chứng minh tương tự ta có EF là tiếp tuyến của đường tròn (O')
c, Ta có: \(\widehat{EBC}=\widehat{FAH}\)( góc nhọn có cạnh tương ứng vuông góc)
\(\widehat{FAH}=\widehat{AFE}\)( Tam giác AIF cân )
\(\Rightarrow\widehat{EBC}=\widehat{AFE}\)mà \(\widehat{AFE}+\widehat{EFC}=2v\)( Kề bù)
\(\Rightarrow\widehat{EBC}+\widehat{EFC}=2v\)
Vậy tứ giác BCFE nội tiếp.
a. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAEH = 900 (vì là hai góc kề bù). (1)
ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAFH = 900 (vì là hai góc kề bù).(2)
ÐEAF = 900 ( Vì tam giác ABC vuông tại A) (3)
Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông).
b.Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .
DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.
=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900
=> O1E ^EF .
Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròn .
c. Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn =>ÐF1=ÐH1 (nội tiếp chắn cung AE) . Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)
=> ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800 mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

a: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2=AE*AB
=>AE/AC=AF/AB
=>ΔAEF đồng dạng vơi ΔACB