Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)
\(\Leftrightarrow HC^2=1296\)
\(\Leftrightarrow HC=36\left(cm\right)\)
\(\Leftrightarrow HB=25\left(cm\right)\)
\(\Leftrightarrow BC=36+25=61\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
ta có ab\(^2\)+ ac\(^2\) = 90 + 160
=250
lại có bc\(^2\) =250
\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )
\(\Rightarrow\)tam giác abc vuông tại a
\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)
\(\tan c\)= \(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)
\(\widehat{b}\)\(\approx\) 53.1
\(\widehat{c}\) \(\approx\) 36.9
áp dụng htl vào tam giác abc vuông tại a có
ah * bc = ab * ac
\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)
áp dụng đ/lí pytago vào tam giác ahb vuông tại h có
bh\(^2\)= ab\(^2\)- ah\(^2\)=324
\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)
áp dụng đ/lí pytago vào tam giác ahc vuông tại h có
ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024
\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{BD}{CD}\right)^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=175\)
\(\Leftrightarrow HC=112\left(cm\right)\)
\(\Leftrightarrow HB=63\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105\left(cm\right)\\AC=140\left(cm\right)\\AH=84\left(cm\right)\end{matrix}\right.\)