K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=30^2=900\)

\(\Leftrightarrow HC^2=1296\)

\(\Leftrightarrow HC=36\left(cm\right)\)

\(\Leftrightarrow HB=25\left(cm\right)\)

\(\Leftrightarrow BC=36+25=61\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=5\sqrt{61}\left(cm\right)\\AC=6\sqrt{61}\left(cm\right)\end{matrix}\right.\)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

21 tháng 5 2019

ta có ab\(^2\)+ ac\(^2\) =  90 + 160

                                =250

lại có bc\(^2\) =250

\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )

\(\Rightarrow\)tam giác abc vuông tại a

\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)

\(\tan c\)\(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)

\(\widehat{b}\)\(\approx\) 53.1

\(\widehat{c}\) \(\approx\) 36.9

áp dụng htl vào tam giác abc vuông tại a có

ah * bc = ab * ac

\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)

áp dụng đ/lí pytago vào tam giác ahb vuông tại h có

bh\(^2\)= ab\(^2\)- ah\(^2\)=324

\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)

áp dụng đ/lí pytago vào tam giác ahc vuông tại h có

ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024

\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{BD}{CD}\right)^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{25}{16}=175\)

\(\Leftrightarrow HC=112\left(cm\right)\)

\(\Leftrightarrow HB=63\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105\left(cm\right)\\AC=140\left(cm\right)\\AH=84\left(cm\right)\end{matrix}\right.\)

3 tháng 10 2021

cảm ơn nhiều ạ