Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ,áp dụng bộ 3 pitago trong tam giác abc suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c
S tứ giác = SABC +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.
2,bài 2 vẽ hình lâu lém tự làm nha bn
3,
B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do
Giải tam giác nhé em, ta vần vận dụng định lý Pitago và các hệ thức lượng.
Áp dụng đl Pitago ta có: \(BC=\sqrt{AB^2+AC^2}=5\)
Áp dụng hệ thức lượng \(BH=\frac{AB^2}{BC}=1,8\Rightarrow CH=BC-BH=3,2\)
\(AH=\sqrt{BH.CH}=2,4\)
\(sinB=\frac{AC}{BC}=0,8\Rightarrow B\approx53^08'\Rightarrow C\approx36^052'\)
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(