K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

a: O là trung điểm của BC

b: Xét \(\left(\dfrac{BH}{2}\right)\) có

ΔBDH là tam giác nội tiếp

BH là đường kính

Do đó: ΔBDH vuông tại D

Xét \(\left(\dfrac{CH}{2}\right)\)

ΔCHE nội tiếp đường tròn

CH là đường kính

Do đó: ΔCHE vuông tại E

Xét tứ giác ADHE có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

18 tháng 9 2021

tính bán kính đường tròn ngoại tiếp làm sao ạ?

11 tháng 12 2021

1: AH=2,4cm

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

a: BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AB^2=4\cdot13=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

b:

CK//AB

CA\(\perp\)AB

Do đó: CK\(\perp\)CA tại C

Xét ΔACK vuông tại C có CH là đường cao

nên \(HA\cdot HK=CH^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot HB=HA^2\)

Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)

=>\(AC^2=HA\cdot HK+CH\cdot HB\)

c: Gọi M là trung điểm của BC

Ta có: ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>ΔABC nội tiếp (M)

Xét tứ giác BAEF có

\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)

Do đó: BAEF là tứ giác nội tiếp

=>\(\widehat{BAF}=\widehat{BEF}\)(1)

Ta có: AH\(\perp\)BC

EF\(\perp\)BC

Do đó: AH//EF

=>AD//EF

=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)

mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{BAF}=\widehat{ACB}\)

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

=>\(\widehat{MAB}=\widehat{ABC}\)

Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>MA\(\perp\)FA tại A

Xét (M) có

MA là bán kính
FA\(\perp\)MA tại A

Do đó: FA là tiếp tuyến của (M)

hay FA là tiếp tuyến của đường tròn đường kính BC