K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\hat{HAB}=\hat{HCA}\left(=90^0-\hat{HBA}\right)\)

Do đó: ΔHAB~ΔHCA

=>\(\frac{HA}{HC}=\frac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

c: ΔAHB vuông tại H

mà HP là đường trung tuyến

nên HP=PA=PB

PA=PH

=>ΔPAH cân tại P

=>\(\hat{PAH}=\hat{PHA}\left(1\right)\)

Ta có: HM⊥AC

AB⊥CA

Do đó: HM//AB

=>\(\hat{MHA}=\hat{HAP}\) (hai góc so le trong)(2)

Từ (1),(2) suy ra \(\hat{MHA}=\hat{PHA}\)

=>HA là phân giác của góc MHP

26 tháng 4 2019

A B C H

a) Xét tam giác HBA và tam giác ABC :

\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

=> tam giác HBA \(~\)tam giác ABC ( đpcm )

b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )

c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )

Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)

Vậy....

4 tháng 5 2016

Bài 1:

 Áp dụng BĐT Cô-si:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

CMTT rồi cộng lại, ta có đpcm.

29 tháng 4 2017

tự làm nhé

bài đó dễ quá nên mik ko biết làm

29 tháng 4 2017

bạn nói dễ mà sao ko biết làm minh chuong

15 tháng 12 2021

sai hay đúng?