K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: HB=AB^2/BC=6^2/10=3,6cm

HC=10-3,6=6,4cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC