Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{ab}\le\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Ta thấy:
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+2ab+b^2\ge2ab+2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Rightarrow\sqrt{\frac{\left(a+b\right)^2}{4}}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
hay \(\sqrt{ab}\ge\frac{a+b}{2}\)
a: AH=căn 13^2-5^2=12
Xét ΔAHB vuông tại H có
sin B=AH/AB=12/13=cos C
cos B=sin C=BH/AB=5/13
tan B=cot C=AH/BH=12/5
cot B=tan C=BH/AH=5/12
b: AH=căn 3*4=2*căn 3(cm)
BC=3+4=7(cm)
AB=căn 3*7=căn 21(cm)
AC=căn 4*7=2*căn 7(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=2*căn 7/7
cos B=sin C=AB/BC=căn 21/7
tan B=cot C=2*căn 7/căn 21=2/căn 3
cot B=tan C=căn 21/2*căn 7=căn 3/2
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)