Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{ab}\le\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
A B C I E H M
Số tự thêm ha
a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:
\(AB^2+AC^2\)
\(=9^2+12^2=225=15^2=BC^2\)
=> Tam giác ABC vuông
b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)
\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)
\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AB^2=BH\cdot BC\)(đinh lí 1)
\(9^2=BH\cdot15\)
\(\Rightarrow BH=5,4\)(cm)
c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AE\cdot AB\)(định lí 1) [1]
Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AI\cdot IC\)(đinh lí 1) [2]
Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)
d/ Gọi M là đường trung tuyến tam giác ABC
\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
: \(AH^2=BH\cdot HC\)(định lí 2)
\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)
Mà \(AH\le AM\)( AH = AM với trường hợp AH trùng AM )
\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)
p/s Hình hơi xấu nhé, thông cảm >:
Ahwi:
Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??