Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
A C B H
\(\tan\widehat{B}=\frac{AH}{BH}=\frac{AH}{5}\)
\(\tan\widehat{C}=\frac{AH}{HC}=\frac{AH}{20}\)
=> \(\frac{\tan\widehat{B}}{\tan\widehat{C}}=\frac{AH}{5}:\frac{AH}{20}=4\Rightarrow\tan\widehat{B}=4.\tan\widehat{C}\)
\(AB^2=BH.BC\) (theo hệ thức lượng trong tam giác vuông)
\(\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{100^2}{5}=2000\left(cm\right)\)
\(\Rightarrow HC=BC-HB=2000-5=1995\left(cm\right)\)
\(AH^2=BH.HC\Leftrightarrow AH^2=1995.5\Leftrightarrow AH=5\sqrt{399}\)
\(tanB=\dfrac{AH}{HB}\)
\(tanC=\dfrac{AH}{HC}\)
\(\)\(\Rightarrow\dfrac{tanB}{tanC}=\dfrac{HC}{HB}=\dfrac{1995}{5}=399\)
\(\Rightarrow tanB=399.tanC\left(đpcm\right)\)
\(\Rightarrowđpcm\) \(\)
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)
Áp dụng Py-ta-go ta có
AH^2=AB^2-BH^2=>AH=5căn3
Áp dụng hệ thức lượng trong tam giác
AH^2=BH*HC=>HC=AH^2/BH=15
=>tanB=5căn3/5=căn3
tanC=5căn3/15
=>3tanC=5căn3/15*3=căn3
nên tanB=3tanC
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
a, \(AB=\sqrt{BC^2-AC^2}=10\sqrt{5}\left(cm\right)\)
\(\cos B=\dfrac{AC}{BC}=\dfrac{2}{3}\approx48^0\Rightarrow\widehat{B}\approx48^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-48^0=42^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{20\sqrt{5}}{30}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{40}{3}\left(cm\right)\end{matrix}\right.\)
là sao cuối cùng cm mẹ gì
Câu hỏi của Đỗ Lê Thanh Thảo - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!