K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)(gt)

\(\widehat{AEH}=90^0\)(gt)

\(\widehat{ADH}=90^0\)(gt)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(hai đường chéo của hình chữ nhật ADHE)

mà AH=6cm(cmt)

nên DE=6cm

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

22 tháng 6 2021

d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật

\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)

Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)

\(\Rightarrow MDEN\) là hình thang vuông

Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH 

\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)

Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH 

\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)

\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)