K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

THONG CẢM EM LÀM THỬ EM CÓ LỚP 7

15 tháng 9 2021

a. Xét tam giác ABC vuông tại A, theo định lý pytago ta có:

BC²=AB²+AC²

⇒AB²=BC²-AC²

⇒AB²=25²-20²

⇒AB²=225

⇒AB=15 cm

Xét tam giác ABC vuông tại A, có đường cao AH:

AB²=BH.BC

⇒BH=AB²:BC

⇒BH=15²:25

⇒BH=9 cm

CMTT, ta có:

AC²=HC.BC

⇒HC=AC²:BC

⇒HC=20²:25

⇒HC=16 cm

Xét tam giác ABC vuông tại A, có đường cao AH:

AH²=BH.HC

⇒AH²=9.16

⇒AH²=144

⇒AH = 12 cm

Vajay AH =12cm; HC =16 cm; HB =9cm; AB =15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)

\(\Leftrightarrow BH=\dfrac{9}{49}CH\)

Ta có: \(BH\cdot CH=AH^2\)

\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)

\(\Leftrightarrow CH^2=9604\)

\(\Leftrightarrow CH=98\left(cm\right)\)

\(\Leftrightarrow BH=18\left(cm\right)\)

30 tháng 6 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{\sqrt{AB^2+AC^2}}{\sqrt{3^2+4^2}}=\dfrac{BC}{5}=k\left(k>0\right)\Rightarrow AB=3k,AC=4k,BC=5k\)

Theo hệ thức lượng giác vào tam giác vuông ABC đường cao AH có:

\(AB\cdot AC=BC\cdot AH\Rightarrow3k\cdot4k=5k\cdot12\Rightarrow k=5\) \(\Rightarrow AB=15cm;AC=20cm;BC=25cm\)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right);HC=BC-HB=25-9=16\left(cm\right)\)

30 tháng 6 2021

ta có : AB/AC=3/4=tan góc C

=> góc C=37 độ

Xét tam giác AHC vuông tại H ta có

tan góc ACH=AH/CH

=>CH=16cm

Mặt khác ta có : AH^2=HB.HC

=>HB=9cm

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

1 tháng 2 2018

Hỏi đáp Toán

3 tháng 8 2016

cảm ơn nhé

1 tháng 2 2018

Hỏi đáp Toán

1 tháng 2 2018

Hỏi đáp Toán