K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=20(cm)

\(\widehat{B}\simeq37^0\)

\(\widehat{C}\simeq53^0\)

25 tháng 10 2021

Áp dụng HTL:

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

6 tháng 9 2020

Dễ thấy \(BC=CH+BH=16+9=25\left(cm\right)\)

Từ đó ta có thể tính được:

\(\hept{\begin{cases}AB^2=BH.BC=9.25=225\\AC^2=CH.BC=16.25=400\end{cases}}\Rightarrow\hept{\begin{cases}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{cases}}\)

và \(AH^2=BH.HC=9.16=144\Rightarrow AH=12\left(cm\right)\)

Vậy AH = 12 cm ; BC = 25 cm ; AB = 15 cm ; AC = 20 cm

28 tháng 12 2021

Giúp mik câu c với ạ

 

28 tháng 12 2021

a: BC=15cm

AH=7,2cm

1 tháng 7 2016

Tôi đang cần gấp giúp tôi với

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

a: AB/BC=4/5

nên AB=4/5BC

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2\)

=>BC=15(cm)

=>AB=12(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>AH=7,2(cm)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{15}=9.6\left(cm\right)\)

CH=BC-BH=15-9,6=5,4(cm)

b: Xét ΔABC vuông tại A có 

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\)

nên \(\widehat{B}=37^0\)

=>\(\widehat{C}=53^0\)