Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\) vuông tại A (gt).
\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)
\(\Rightarrow BC=10\left(cm\right).\)
c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)
a)Diện tích tam giác vuông ABC là:
S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)
b)Độ dài cạnh BC là:
theo định lý pytago về tam giác vuông, ta có
BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm
c) Độ dài đường cao AH
AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm
BH = BC - HC = 10 - 6,4 = 3,6 cm
AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)
a,
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)
b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8cm
a)SABC=6.8=48(cm2)
b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm
c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA=AC/HA=10/6=5/3
c: AH=4,8cm
BH=3,6cm
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
c, tam giác ABC vuông tại A, có đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm
d, phải là cắt AC nhé, xem lại đề nhé bạn
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx