Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC
Tứ giác ARHD là hình chữ nhật vì: A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.
Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6
Nên DE = 6cm
Đáp án cần chọn là : D
Bài 7: Sửa đề; AB=12cm; BC=20cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot20=12^2=144\)
=>BH=144/20=7,2(cm)
b: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)
Bài 8:
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144\)
=>\(AC=\sqrt{144}=12\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>BH=81/15=5,4(cm)
b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM
Xét ΔABC có AM là phân giác
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)
=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)
=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)
=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)
=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)
=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)
=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE