Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nka !!!
a) , b) Theo định lí Py - ta - go trong \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)
Xét \(\Delta AHB\)và \(\Delta CAB\)có :
\(\widehat{ABC}\)chung ; \(\widehat{BHA}=\widehat{BAC}=90\)độ
\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)
\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)
\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)
c) ta có : \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\) ( do AM là đường trung tuyến ứng với cạnh huyền BC )
Theo định lí Py - ta - go trong \(\Delta AHM\)vuông tại H , ta có :
\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)
\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)
TK CKO MK NKA !!!
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH
a: Đặt BH=x, CH=y
Theo đề, ta có: xy=4,82=23,04 và x+y=10
=>x và y là hai nghiệm của pt là:
\(x^2-10x+23.04=0\)
=>x=3,6 hoặc x=6,4
=>(BH;CH)=(3,6;6,4) hoặc(BH;CH)=(6,4;3,6)
TH1: BH=3,6cm; CH=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
AM=BC/2=5cm
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
\(AC=\sqrt{6.4\cdot10}=8\left(cm\right)\)
TH2:
CH=3,6cm; BH=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
AM=BC/2=5cm
\(AC=\sqrt{3.6\cdot10}=6\left(cm\right)\)
\(AB=\sqrt{6.4\cdot10}=8\left(cm\right)\)
b: Đặt BH=a; CH=b
Theo đề, ta có: ab=144 và a+b=25
=>a,b là các nghiệm của pt là:
\(x^2-25x+144=0\)
=>x=9 hoặc x=16
TH1: BH=9cm; CH=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AM=BC/2=25/2=12,5(cm)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
TH2:CH=9cm; BH=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AM=BC/2=25/2=12,5(cm)
\(AC=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AB=\sqrt{16\cdot25}=20\left(cm\right)\)
a) Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)= \(\widehat{D}\)=\(\widehat{E}\)= 900
b) Tứ giác ADHE là hình chữ nhật nên DE = AH
Ap dụng định lý Pytago vào tam giác vuông ABH ta có:
AH2 + BH2 = AB2
\(\Rightarrow\)AH2 = AB2 - BH2
\(\Rightarrow\)AH2 = 102 - 62 = 64
\(\Rightarrow\)AH = \(\sqrt{64}\)= 8
Vì AH = DE nên DE = 8cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
DO đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó:ADHE là hình chữ nhật
Suy ra: AH=DE
mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)
nên DE=8cm
a,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)
=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
b, Ta có : \(AH^2=BH.CH\) (cmt)
=> \(AH^2=4.9\)
=> \(AH^2=36\)
=> AH = 6
Xét Δ AHB, có :
\(AB^2=AH^2+BH^2\)
=> \(AB^2=6^2+4^2\)
=> \(AB^2=52\)
=> AB = 7,2 (cm)
Xét Δ AHC, có :
\(AC^2=AH^2+CH^2\)
=> \(AC^2=6^2+9^2\)
=> \(AC^2=117\)
=> AC = 10,8 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\)
=> \(BC^2=7,2^2+10,8^2\)
=> \(BC^2=168,48\)
=> BC = 12,9 (cm)
Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)
=> MC = 6,45 (cm)
Ta có : BC = BH + HM + MC
=> 12,9 = 4 + HM + 6,45
=> HM = 12,9 - 4 - 6,45
=> HM = 2,45 (cm)
Xét Δ AMH vuông tại H, có :
\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)
=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)
=> \(S_{\Delta AMH}=7,35\left(cm\right)\)