Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo \(pi-ta-go\) ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\) \((cm)\)
Áp dụng hệ thức lượng vào tam giác \(ABC\) vuông và đường cao \(AH\) ta có :
\(AH.BC=AB.AC\)\(\Rightarrow\) \(AH=\dfrac{6.8}{10}=4,8(cm)\)
a) \(\Delta ABC\) vuông tại A (gt).
\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)
\(\Rightarrow BC=10\left(cm\right).\)
c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)
a)Diện tích tam giác vuông ABC là:
S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)
b)Độ dài cạnh BC là:
theo định lý pytago về tam giác vuông, ta có
BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm
c) Độ dài đường cao AH
AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm
BH = BC - HC = 10 - 6,4 = 3,6 cm
AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)
a,
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)
b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8cm
a)SABC=6.8=48(cm2)
b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm
c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm
a: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
Có phải ý bạn là AD là tia phân giác ^HAC ko ?
ABCHD
Áp dụng định lí Pythagoras vào △ABC ta được :
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82
\(\Rightarrow\)BC2 = 100
\(\Rightarrow\)BC2 = 10 cm
Ta có : \(S_{ABC}=\frac{AB.AC}{2}=\frac{BC.AH}{2}\)
\(\Rightarrow AB.AC=BC.AH\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{6.8}{10}=4,8\left(cm\right)\)
Áp dụng định lý Pythagoras vào △AHC ta được :
AC2 = HC2 + AH2
\(\Rightarrow\)82 = HC2 + 4,82
\(\Rightarrow\)HC2 = 64 - 23,04
\(\Rightarrow\)HC2 = 40,96
\(\Rightarrow\)HC = 6,4 cm
Xét △AHC có AD là tia phân giác ^HAC
\(\Rightarrow\frac{HD}{AH}=\frac{DC}{AC}\)
Áp dụng tính chất dạy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{HD}{4,8}=\frac{HC}{8}=\frac{HD+DC}{4,8+8}=\frac{HC}{12,8}=\frac{6,4}{12,8}=\frac{1}{2}\)
\(\Rightarrow HD=\frac{1}{2}.4,8=2,4\left(cm\right)\)
Vậy HD = 2,4 cm