Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)(hệ thức lượng)
b: BC=BH+CH=13(cm)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
Bài 1:
B A C D H H
a,Xét ΔBAH và ΔBCA,có:
\(\widehat{B}\) : góc chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ ΔBAH ∼ ΔBCA (1) (gg)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇒ \(AB^2=BH.BC\)
C/m tương tự:
\(\Delta ACH\sim\Delta BCA\left(gg\right)\left(2\right)\)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC\)
Từ(1)(2) ⇒ ΔBAH ∼ ΔACH
⇒ \(\dfrac{BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH.CH\)
b,Vì AD là phân giác của ΔBAC
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{1}{2}\)
ΔBAH ∼ ΔACH
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
hay \(\dfrac{1}{2}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{1}{2}AH\\CH=2AH\end{matrix}\right.\Rightarrow\dfrac{HB}{HC}=\dfrac{\dfrac{1}{2}AH}{2AH}=\dfrac{1}{4}\)
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc ABC chung
Do đó:ΔBAH\(\sim\)ΔBCA
Suy ra:BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔHAB vuông tai H và ΔHCA vuông tại H có
góc HAB=góc HCA
Do đó: ΔHAB\(\sim\)ΔHCA
SUy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
a, Xét △ ABC vuông tại A có:
BC2 = AC2 + AB2 (định lý Pytago)
=> BC2 = 62 + 82 = 100
=> BC = 10 cm
Vì AD là phân giác \(\widehat{BAC}\) (gt)
\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)
Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)
\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)
b, Xét △AHB vuông tại H và △AEH vuông tại E
Có: \(\widehat{HAB}\)là góc chung
=> △AHB ᔕ △AEH (g.g)
\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)
=> AH . AH = AE . AB
=> AH2 = AE . AB
c, Xét △AHC vuông tại H và △AFH vuông tại F
Có: \(\widehat{HAC}\)là góc chung
=> △AHC ᔕ △AFH (g.g)
\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)
=> AH2 = AF . AC
mà AH2 = AE . AB (cmt)
=> AE . AB = AF . AC
Lời giải:
a)
Tam giác $BAH$ có đường phân giác $BI$. Áp dụng tính chất đường phân giác ta có: \(\frac{IH}{IA}=\frac{BH}{BA}(1)\Rightarrow IA.BH=IH.BA\)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}(=90^0)\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BC}=\frac{BH}{BA}(2)\Rightarrow BA^2=BH.BC\) (đpcm)
c)
Tam giác $BAC$ có đường phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{DA}{DC}=\frac{BA}{BC}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{IH}{IA}=\frac{BH}{BA}=\frac{BA}{BC}=\frac{DA}{DC}\) (đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
d: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
c) Xét ΔABH có BI là đường phân giác
=>\(\dfrac{AB}{BH}\)=\(\dfrac{AI}{IH}\)(1)
Xét ΔABC có BD là đường phân giác
=> \(\dfrac{BC}{AB}\)=\(\dfrac{DC}{AD}\)
Mà \(\dfrac{BC}{AB}\)= \(\dfrac{AB}{BH}\)(cmt)
=>\(\dfrac{DC}{AD}\)=\(\dfrac{AB}{BH}\) (2)
Từ (1)(2)=>\(\dfrac{AI}{IH}\)=\(\dfrac{DC}{AD}\)