K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCAB

=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)(1)

=>\(CA^2=CH\cdot CB\)

b: Xét ΔBAC có BK là phân giác

nên \(\dfrac{AK}{BK}=\dfrac{CA}{CB}\left(2\right)\)

Xét ΔCAH có CI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{CH}{CA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{AK}{BK}=\dfrac{IH}{IA}\)

22 tháng 4 2015

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

d) ('Mình ko biết')

28 tháng 7 2016

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

17 tháng 8 2018

A B C H E F 5 cm 12 cm

a) Áp dụng định lí Py-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=5^2+12^2\)

\(\Leftrightarrow BC^2=169\)

\(\Leftrightarrow BC=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có :  \(AB.AC=BC.AH\)

\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)

b) Áp dụng hệ thức lượng ta có  \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

Do BE là tia phân giác \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)

\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)

Mặt khác BF là tia phân giác  \(\widehat{ABC}\)

\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)

\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)

Xét  \(\Delta AEF\)có  \(AE=AF\left(=\frac{10}{3}cm\right)\)

\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )

Vậy ...