K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

a) Chứng minh \(\Delta ABH\)đồng dạng với \(\Delta CAH\)(G.G)

\(=>\frac{BH}{AB}=\frac{AH}{AC}\) \(=>\frac{BH}{15}=\frac{3}{5}\)

\(=>BH=9\)

Mà \(AB^2=BH.BC\)

=> \(BC=\frac{15^2}{9}=25\)

=> \(HC=25-9=16\)

30 tháng 9 2016

Ta có \(AH^2=HB.HC\)

=> \(AH^4=HB^2.HC^2\)

Mà \(\begin{cases}HB^2=BE.AB\\HC^2=CF.AC\end{cases}\)

=> \(AH^4=BE.CF.AB.AC\)

Mà \(AB.AC=AH.BC\)

=> \(AH^4=BE.CF.BC.AH\)

=> đpcm

 

 

8 tháng 8 2017

bạn nào biết trả lời nhanh nha. mình đang cần gấp . cảm ơn

10 tháng 8 2017

   A B C H M E F N I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH\)

Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BC^2-AC^2=\frac{AB^2AC^2}{AH^2}-AC^2\Rightarrow15^2=\frac{15^2.\frac{25}{9}AH^2}{AH^2}-AC^2\)

\(\Rightarrow AC^2=400\Rightarrow AC=20\left(cm\right)\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(\Rightarrow HB=\frac{AB^2}{BC}=9\left(cm\right);HC=BC-BH=25-9=16\left(cm\right)\)

b.Vì E;F là hình chiếu của H lên AB;AC \(\Rightarrow\widehat{E}=\widehat{F}=\widehat{A}=90^0\Rightarrow AEHF\)là hình chữ nhật

c. Gỉa sử \(AM⊥EF\)\(\Rightarrow\)ta phải chứng minh M là trung điểm BC

Gọi I là giao điểm của EF và AH ;   N là giao của EF và AM

Xét tam giác AIN và tam giác AHM 

có \(\hept{\begin{cases}\widehat{A}chung\\\widehat{N}=\widehat{H}=90^0\end{cases}\Rightarrow\Delta AIN~\Delta AHM\left(g-g\right)\Rightarrow\widehat{AIN}=\widehat{AMH}\left(1\right)}\)

Xét tam giác AEF và tam giác ACB có \(\hept{\begin{cases}\widehat{A}=90^0chung\\\widehat{C}=\widehat{E}\left(+\widehat{B}=90^0\right)\end{cases}\Rightarrow\Delta AEF~\Delta ACB\left(g-g\right)\Rightarrow\widehat{AFE}=\widehat{B}\left(2\right)}\)

Vì AEHF là hình chữ nhật nên \(\widehat{IFA}=\widehat{IAF}\left(3\right)\)

Lại có \(\widehat{AIF}=180^0-2.\widehat{IFA}\)

Từ (1) ;(2) và (3) \(\Rightarrow\widehat{AMB}=180^0-2.\widehat{B}\Rightarrow\Delta AMB\)cân tại M \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)\(\Rightarrow M\)là trung điểm BC

Vậy trung tuyến AM vuông góc với EF

d. Gỉa sử tam giác ABC vuông cân \(\Leftrightarrow AB=AC\Rightarrow S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AB^2\left(4\right)\)

\(\Delta ABC\)vuông cân \(\Leftrightarrow AE=AF\Rightarrow S_{AEHF}=AE.AF=AE^2=\frac{1}{4}AB^2\Rightarrow2S_{AEHF}=\frac{1}{2}AB^2\left(5\right)\)

Từ (4) và (5) ta có \(S_{ABC}=2S_{AEHF}\)đúng với giả thiết ban đầu 

Vậy giả sử \(S_{ABC}=2S_{AEHF}\)thì tam giác ABC vuông cân  

4 tháng 8 2017

A B C E F H M K I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)

Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)

b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)

Ta có \(AH^3=12^3=1728\)

\(BC.BE.CF=25.5,4.12,8=1728\)

Vậy \(AH^3=BC.BE.CF\)

c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC 

Ta gọi I là giao điểm của AH và EF

Xét \(\Delta AKI\)và \(\Delta AHM\)

có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)

\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)

Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)

\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)

Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)

\(\Rightarrow\Delta AMB\)cân tại  I \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)

Vậy M là trung điểm BC hay ta có đpcm 

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

25 tháng 8 2016

a, Xét ΔABH và ΔAHD có

       Góc A chung

        Góc ADH=Góc AHB=90° 

=> ΔABH ~ΔAHD(g.g)

=> AH/AB=AD/AH

=> AB.AD=AH²(1)

Xét ΔAEH và ΔAHC có:

Góc A chung 

Góc AEH = góc AHC

=>ΔAEH~ΔAHC(g.g)

=> AE/AH=AH/AC

=>AE.AC=AH²(2)

Từ (1);(2) => AD.AB=AE.AC(đpcm)

b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI

=> ΔAIC cân tại I

=>góc IAC =góc ICA

Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI

Mà góc BAI =góc AED(cùng phụ)

         => góc IBA=góc AED

Mà ABI+góc ACI= 90°

=>    gócAED + góc IAC=90° 

      => DEvuông góc vs AI

c, 

27 tháng 8 2016

mình làm câu c,d nek bạn

c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)

        => EN là đường trung tuyến ứng vs cạnh huyền

        => EN=NH=NC( vì N là trung điểm của HC)

         => \(\Delta\)ENC cân tại N(NE=NC cmt)

        => góc NEC=góc NCE(hai góc đáy) (1)

     chứng minh tương tự trong \(\Delta\)BMD cân tại M

       => góc DBM=góc MDB(2)

ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ

                                            =>góc MDB+ góc NEC(vì (1);(2))    (3)

      và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)

từ (3);(4)=>góc BDM+góc ADE=90 độ

              => góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))

              => DM\(\perp\) DE (*)

     và    góc DEA+ góc NEC=90 độ

            => góc HDE+góc HEN= 90 độ 

           => DE\(\perp\) EN (**)

từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)

d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)

=> OH=OA=OD=OE (t/c đường chéo hcn)

=> OH=OA=HA/2

ta có HM+HN=BM+NC(vì BM=MH; NH=NC)

    =>  MH+HN=BC/2=>MN=1/2 BC

 diện tích \(\Delta\)ABC =1/2. AH. BC

 diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC

Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)

                                         =4

Mình nghĩ là làm như vậy, có gì bạn góp ý nhahihi