K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

chịu toán lp 9 mới có lp 7 thôi mà

a: AB/BC=4/5

nên AB=4/5BC

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2\)

=>BC=15(cm)

=>AB=12(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>AH=7,2(cm)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{15}=9.6\left(cm\right)\)

CH=BC-BH=15-9,6=5,4(cm)

b: Xét ΔABC vuông tại A có 

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\)

nên \(\widehat{B}=37^0\)

=>\(\widehat{C}=53^0\)

7 tháng 8 2016

Xét ΔABH và ΔCAH có:

  \(\widehat{AHB}=\widehat{CHA}=90\left(gt\right)\)

  \(\widehat{ABH}=\widehat{CAH}\) (cùng phụ với \(\widehat{BAH}\) )

=>ΔABH=ΔCAH (g.g)

=>\(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)

=>\(\frac{20}{21}=\frac{420}{HC}=\frac{BH}{420}\)

=>\(HC=\frac{420\cdot21}{20}=441\)

    \(BH=\frac{420\cdot20}{21}=400\)

=> BC=HC+HB=441+400=841

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(AB^2=BH\cdot BC=400\cdot841=336400\Rightarrow AB=580\)

\(AC^2=HC\cdot BC=441\cdot841=370881\Rightarrow AC=609\)

Vậy chu vi của ΔABC là: AB+AC+BC=580+609+841=2030