K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

A B C D E H

ke AHvuong goc voi BC  

ta co \(DE\) Song song voi AH \(\Rightarrow\frac{DC}{AC}=\frac{DE}{AH}=\frac{2}{3}\) \(\Rightarrow AH=\frac{3}{2}DE\) (1)

lai co trong tam giac ABC co \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) 

     thay  (1) vào ta có  \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{\left(\frac{3}{2}DE\right)^2}=\frac{4}{9DE^2}\)

24 tháng 7 2017

Bạn tại sao\(\frac{1}{AB^2}\)+\(\frac{1}{AC^2}\)=\(\frac{1}{AH^2}\)

13 tháng 8 2018

https://olm.vn/hoi-dap/question/1001260.html

13 tháng 8 2018

ban oi de sai

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)