K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm

AH = tan\(\widehat{ACH}\)x HM = tan 15x 2 = \(4-2\sqrt{3}\)cm

Sin \(\widehat{AMH}\)\(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\)  = \(2-\sqrt{3}\)    cm

Định lí Pitago : AM= AH2 + HM2

HC = tan \(\widehat{ACH}\)x AH

12 tháng 7 2018

Tam Giác ABC có A = 90o

AM là trung tuyến

=> tam giác AMC cân tại M

=> AMH = 2.C = 30o

AM = 1/2 . BC = 2 (cm)

=> AH = Sin30 . AM = 1 (cm)

=> HM = Cos30 . AM = \(\sqrt{3}\) (cm)

=> HC = HM + MC = \(\sqrt{3}\) + 2 (cm)

b)

Tính được

AC = \(\sqrt{HC.BC}\)

\(\Rightarrow AC=\sqrt{\left(\sqrt{3}+2\right).4}=2\sqrt{2+\sqrt{3}}\)

\(\Rightarrow C\text{os}15^o=\dfrac{HC}{AC}=\dfrac{2+\sqrt{3}}{2\sqrt{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\)

\(\Rightarrow C\text{os}15^o=\dfrac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{4}=\dfrac{\sqrt{2}.\left(\sqrt{3}+1\right)}{4}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)(đpcm)

5 tháng 9 2021

sao AMH = 2C v ạ

 

29 tháng 11 2023

Ta có \(AC^2=CH.BC=AB.BC\)

Mà \(BC^2=AB^2+AC^2\) \(=AB^2+AB.BC\)

\(\Leftrightarrow AB^2+AB.BC-BC^2=0\)

\(\Leftrightarrow\left(\dfrac{AB}{BC}\right)^2+\dfrac{AB}{BC}-1=0\)

\(\Leftrightarrow\dfrac{AB}{BC}=\dfrac{-1+\sqrt{5}}{2}\)  (loại TH \(\dfrac{AB}{BC}=\dfrac{-1-\sqrt{5}}{2}< 0\))

\(\Leftrightarrow\cos B=\dfrac{\sqrt{5}-1}{2}\), đpcm.

 

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB