K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

a/ Nối AM

- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)

- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)

Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)

b/ Ta có: AM=AE (cmt)

- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM 

Tương tự ta cũng có: AM=AD (cmt)

- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM

Từ đó suy ra được: BD // CE (đpcm)

c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất

14 tháng 12 2017

ABCMDEIK

Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

17 tháng 10 2019

A A A B B B C C C M M M D D D E E E

Do E đối xứng với M qua AC nên AC là đường trung trực EM.

Do đó AE = AM (1). Tương tự AD = AM (2)

Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)

*Chứng minh A, E, D thẳng hàng

Theo (1) thì AE = AM -> tam giác AEM cân tại A.

Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)

Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)

Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED

Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)

Đẳng thức xảy ra khi M trùng H.

Do đó \(ED\ge2AM\ge2AH=const\)

Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.

P/s: Mới học dạng này nên ko chắc..

17 tháng 10 2019

À trong hình quên hạ AH vuông góc BC :P