Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
b)
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = \(\sqrt{400}\) = 20 (cm)
mà AM = \(\frac{1}{2}\)BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
Câu 1:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
=>AK=BC/2=10(cm)
Câu 2:
a: Xét tứ giác AMCK có
I là trung điểm của MK
I là trung điểm của AC
Do đó: AMCK là hình bình hành
mà MA=MC
nên AMCK là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MI//AB
Do đó:MI là đường trung bình
=>MI//AB
hay MK//AB
Xét tứ giác ABMK có
AB//MK
AK//MB
Do đó: ABMK là hình bình hành
A.
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
B.
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = √400400 = 20 (cm)
mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
a: M đối xứng N qua AB
nên AM=AN; BM=BN
mà MA=MB
nên MA=MB=AN=BN
=>AMBN là hình thoi
b: Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
=>AM cắt CN tại trung điểm của mỗi dường
=>N,I,C thẳng hàng
c: BC=2*AM=10cm
=>AB=8cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
a: BC=20cm
AM=10cm
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung ddierm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
hay BC=20(cm)
Xét ΔABC có
D là trung điểm của BC
I là trung điểm của AB
Do đó: DI là đường trung bình
=>DI=AC/2=8(cm)
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=10(cm)
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do dó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
c: Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
a, Xét tứ giác BICN có :
BM=MC
IM=MN
do đó tứ giác BICN là hình bình hành ( t/c 2 đường chéo)
b, áp dụng đ/l py-ta-go vào tam giác vuông ABC có :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=20cm\)
lại có \(AM=\dfrac{1}{2}BC\)
\(\Rightarrow AM=\dfrac{1}{2}.20=10cm\)