Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a: goc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a: góc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC và AK=HC
mà BA=BH
nên BK=BC
mà EK=EC
nên BE là trung trực của KC
=>BE vuong góc KC
a: góc A=90 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBDC có
DH,CA là đường cao
DH cắt CA tại E
=>E là trực tâm
=>BE vuông góc DC
d: cosB=AB/BC=1/2
=>góc B=60 độ
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó; ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
Do đó: E là trực tâm
=>BE vuông góc KC
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)
Suy ra: EK=EC(hai cạnh tương ứng) và AK=HC(Hai cạnh tương ứng)
Ta có: BK=BA+AK
BC=BH+HC
mà BA=BH(cmt)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EK=EC(cmt)
nên E nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của KC
hay BE\(\perp\)KC
b) Ta có: EA=EH(cmt)
mà EH<EC
nên EA<EC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BE là đường phân giác
nên BE là đường cao
b: Ta có: AE=EH
mà EH<EC
nên AE<EC
c: Sao cho gì bạn ơi?
a: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH
c: Xét ΔBKC có
BE vừa là đường cao, vừa là phân giác
=>ΔBKC cân tại B
a) Xét △���△ABC có �^+�^+�^=180∘A^+B^+C^=180∘ mà �^=90∘;�^=50∘A^=90∘;B^=50∘ suy ra 90∘+50∘+�^=180∘=>�^=40∘90∘+50∘+C^=180∘=>C^=40∘
b) Xét tam giác △���△BEA và △���△BEH.
có ��BE là cạnh chung
���^=���^(=90∘)��=�� suy ra △���=△��� (c.h-cgv) ⇒���^=���^ suy ⇒BAE=BHE(=90∘)BA=BH ra △ABE=△HBE (c.h-cgv) ABE=HBE.
=>��=>BE là phân giác của �^B
c) �E là giao điểm của hai đường cao trong tam giác ���BKC nên ��BE vuông góc với ��KC.
Tam giác ���BKC cân tại �B có ��BI là đường cao nên ��BI là đường trung tuyến. Do đó �I là trung điểm của ��KC.
a) Xét △���△ABC có �^+�^+�^=180∘A^+B^+C^=180∘ mà �^=90∘;�^=50∘A^=90∘;B^=50∘ suy ra 90∘+50∘+�^=180∘=>�^=40∘90∘+50∘+C^=180∘=>C^=40∘
b) Xét tam giác △���△BEA và △���△BEH.
có ��BE là cạnh chung
���^=���^(=90∘)��=�� suy ra △���=△��� (c.h-cgv) ⇒���^=���^ suy ⇒BAE=BHE(=90∘)BA=BH ra △ABE=△HBE (c.h-cgv) ABE=HBE.
=>��=>BE là phân giác của �^B
c) �E là giao điểm của hai đường cao trong tam giác ���BKC nên ��BE vuông góc với ��KC.
Tam giác ���BKC cân tại �B có ��BI là đường cao nên ��BI là đường trung tuyến. Do đó �I là trung điểm của ��KC.