Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại xem có sai đề không nhé vì ABCD không thể nào là hình thang cân được
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
câu c nhé
gọi DE giao AC =O, ta có tam giác AEC cân tại E, cậu tự chứng minh
thì góc EAC=gócECA, mà góc ECA=góc CAD ( so le trong)
=> AO là phân giác góc EAD
mặt khác cậu dễ dàng chứng minh DE là trung trực của AC => AO vuông góc với ED
tam giác ADE có phân giác đồng thời là trung tuyến => cân
rồi cậu tự chúng minh tiếp nhé
Answer:
A) Ta có: AD // BC
\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow60^o+\widehat{BAD}=180^o\)
\(\Rightarrow\widehat{BAD}=120^o\)
\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)
\(\Rightarrow\widehat{DAC}=30^o\)
B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D
\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)
\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)
Tứ giác ABCD có:
AD // BC (giả thiết)
Hai góc kề đáy CD bằng nhau
=> ABCD là hình thang cân
C) Theo phần b): ABCD là hình thang cân
=> AB = CD mà AD = CD (giả thiết)
=> AB = AD
Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)
=> AB = BC : 2 = BE = EC
Mà ta có: AB = AD => AD = BE
Tứ giác ADEB có:
AD // BE
AD = BE
=> Nên là hình bình hành
Ta có: AD = AB => ADEB là hình thoi