Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔCIA có
CH,AE là đường cao
CH cắt AE tại D
=>D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có
HA chung
HB=HD
Do đó: ΔHAB=ΔHAD
b: Xét ΔCAD có \(\widehat{CDA}>90^0\)
nên CA>CD
a: Xét ΔAHB và ΔAHD có
AH chung
HB=HD
AB=AD
Do đó: ΔAHB=ΔAHD
b: Xét ΔABD cân tại A có \(\widehat{BAD}=60^0\)
nên ΔABD đều
hay \(\widehat{ABD}=60^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có \(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)
Vậy \(\widehat{HAB}=30^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)
Vậy : \(\widehat{HAB}=30^0\)
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm của AD
H là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: DE//AB
c: Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
Xét ΔEAC và ΔEDC có
EA=ED
EC chung
AC=DC
Do đó: ΔEAC=ΔEDC
Suy ra: \(\widehat{EAC}=\widehat{EDC}\)
GT,KL tự viết (hình cũng tự vẽ)
a, Xét △AHB và △AHE có :
AH : chung
\(\widehat{AHB}=\widehat{AHE}(=90^o)\)
HB = HE (GT)
=> △AHB = △AHE (c.g.c)
b, Xét △AHB và △DHE có :
AH = DH(GT)
\(\widehat{AHB}=\widehat{DHE}(=90^o)\)
BH = EH (GT)
=> △AHB = △DHE (c.g.c)
=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> DE // AB
c, Xét △AHC và △DHC có :
HC : chung
\(\widehat{AHC}=\widehat{DHC}(=90^o)\)
AH = DH (GT)
=> △AHC = △DHC (c.g.c)
=> AC = DC (2 cạnh tương ứng)
\(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)
Xét △EAC và △EDC có :
EC : chung
\(\widehat{ECA}=\widehat{ECD}(cmt)\)
AC = DC (cmt)
=> △EAC = △EDC (c.g.c)
=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)
d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)
Xét △MEN và △DEA có :
\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)
\(\widehat{EMN}=\widehat{EDA}( so le)\)
=> △MEN = △DEA (c.g.c)
=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)
Mà 2 góc ở vị trí đối đỉnh với nhau
=> A , E , N thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
c: Xét ΔCAD có
CH vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔEAD có
EH là đường cao, là đường trung tuyến
Do đó: ΔEAD cân tại E
=>EA=ED
Xét ΔCAE và ΔCDE có
CA=CD
AE=DE
CE chung
Do đó; ΔCAE=ΔCDE
=>\(\widehat{EAC}=\widehat{EDC}\)
d: Xét ΔNEA và ΔMED có
\(\widehat{NEA}=\widehat{MED}\)
EA=ED
\(\widehat{NAE}=\widehat{MDE}\)
Do đó: ΔNEA=ΔMED
=>AN=MD
CN+NA=CA
CM+MD=CD
mà CA=CD và AN=MD
nên CN=CM
Xét ΔCAD có CN/NA=CM/MD
nên NM//AD
=>NM\(\perp\)BC
e: Xét tứ giác AIDK có
AI//DK
AI=DK
Do đó: AIDK là hình bình hành
=>AD cắt IK tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của KI
=>K,H,I thẳng hàng
a) Xét ΔABH vuông tại H và ΔADH vuông tại H có
AH chung
BH=DH(gt)
Do đó: ΔABH=ΔADH(hai cạnh góc vuông)
Suy ra: AB=AD(hai cạnh tương ứng)
Xét ΔABD có AB=AD(cmt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)(gt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)