K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔADH vuông tại H có 

AH chung

BH=DH(gt)

Do đó: ΔABH=ΔADH(hai cạnh góc vuông)

Suy ra: AB=AD(hai cạnh tương ứng)

Xét ΔABD có AB=AD(cmt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)(gt)

nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC

d: Xét ΔCIA có

CH,AE là đường cao

CH cắt AE tại D

=>D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng

a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có

HA chung

HB=HD

Do đó: ΔHAB=ΔHAD

b: Xét ΔCAD có \(\widehat{CDA}>90^0\)

nên CA>CD

a: Xét ΔAHB và ΔAHD có 

AH chung

HB=HD

AB=AD

Do đó: ΔAHB=ΔAHD

b: Xét ΔABD cân tại A có \(\widehat{BAD}=60^0\)

nên ΔABD đều

hay \(\widehat{ABD}=60^0\)

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0
8 tháng 12 2016

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\)\(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)

Vậy \(\widehat{HAB}=30^0\)

8 tháng 12 2016

Bạn tự vẽ hình nhé

8 tháng 12 2016

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)

Vậy : \(\widehat{HAB}=30^0\)

8 tháng 12 2016

Bạn tự vẽ hình nha

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

7 tháng 1 2022

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng

22 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

c: Xét ΔCAD có

CH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔEAD có

EH là đường cao, là đường trung tuyến

Do đó: ΔEAD cân tại E

=>EA=ED

Xét ΔCAE và ΔCDE có

CA=CD

AE=DE

CE chung

Do đó; ΔCAE=ΔCDE

=>\(\widehat{EAC}=\widehat{EDC}\)

d: Xét ΔNEA và ΔMED có

\(\widehat{NEA}=\widehat{MED}\)

EA=ED

\(\widehat{NAE}=\widehat{MDE}\)

Do đó: ΔNEA=ΔMED

=>AN=MD

CN+NA=CA

CM+MD=CD

mà CA=CD và AN=MD

nên CN=CM

Xét ΔCAD có CN/NA=CM/MD

nên NM//AD

=>NM\(\perp\)BC

e: Xét tứ giác AIDK có

AI//DK

AI=DK

Do đó: AIDK là hình bình hành

=>AD cắt IK tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của KI

=>K,H,I thẳng hàng