Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác vuông ; tam giác ABD và tam giác ABC có:
AB là cạnh chung
AD=AC (theo bài ra)
=>tam giác ABD =tam giác ABC (2 cạnh góc vuông)
=>BD =BC (2 cạnh tương ứng) và góc DBA =góc CBA (2 góc tương ứng)
=>Tam giác BDC cân tại B và góc DBC= 30+30=60 độ
Vì tam giác BDC cân tại B mà có góc DBC=60 độ
=>Tam giác BDC đều
=>BC=BD=DC=AC+AD=8+8=16(cm)
Vậy BD=16 CM
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá
nhu hinh ve tren
trong tam vuong ABC co ab^2+bc^=ac^2
thay so ta co 6^2+BC^2=8^2
36+BC^2=64
BC^2=64-36
BC^2=28
BC=(can28)^2
phan cuoi tu lam nhe to lam duoc nhung lau lam
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)