Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn thử vào nik bạn đăng xuất xong đi ấn vào quên mật khẩu thử xem đk ko nếu ko đk thì 1 số trường hợp là nik bị khóa
http://lamthenao.com/internet/cach-lay-lai-mat-khau-facebook-qua-dien-thoai.html

Nếu x=0x=0:
3x2+2x−13x2+2x−1=3.02+2.0−1=−1=3.02+2.0−1=−1
Nếu x=−1x=−1:
3x2+2x−13x2+2x−1=3(−1)2+2(−1)−1=3−2−1=0=3(−1)2+2(−1)−1=3−2−1=0
Nếu x=13x=13:
3x2+2x−13x2+2x−1=3(13)2+2.13−1=13+23−1=0
Nếu \(x=0\):
\(3x^2+2x-1\)\(=3.0^2+2.0-1=-1\)
Nếu \(x=-1\):
\(3x^2+2x-1\)\(=3\left(-1\right)^2+2\left(-1\right)-1=3-2-1=0\)
Nếu \(x=\frac{1}{3}\):
\(3x^2+2x-1\)\(=3\left(\frac{1}{3}\right)^2+2.\frac{1}{3}-1=\frac{1}{3}+\frac{2}{3}-1=0\)

A B C K H I
a) Xét \(\Delta ABH\) và \(\Delta KBH\) có:
\(AB=KB\left(gt\right)\)
BH là cạnh chung
\(AH=HK\) ( H là trung điểm của AK )
=> \(\Delta ABH=\Delta KBH\left(c.c.c\right)\)
Chúc bạn may mắn !


Bài 1:
a: Oz là phân giác của góc xOy
=>\(\hat{xOz}=\hat{yOz}=\frac12\cdot\hat{xOy}=\frac12\cdot60^0=30^0\)
b: ta có: \(\hat{xOz}=\hat{z^{\prime}Ot}\) (hai góc đối đỉnh)
mà \(\hat{xOz}=30^0\)
nên \(\hat{z^{\prime}Ot}=30^0\)
Bài 2:
a: \(\hat{xOz}+\hat{zOy}=180^0\) (hai góc kề bù)
=>\(\hat{zOy}=180^0-70^0=110^0\)

📘 1. Nhị thức Newton là gì?
Nhị thức Newton là một công thức dùng để khai triển lũy thừa của một tổng dạng \(\left(\right. a + b \left.\right)^{n}\), trong đó \(n\) là số tự nhiên.
✅ Công thức nhị thức Newton:
\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)
Trong đó:
- \(\left(\right. \frac{n}{k} \left.\right)\) là hệ số nhị thức, đọc là "n chọn k", được tính bằng:
\(\left(\right. \frac{n}{k} \left.\right) = \frac{n !}{k ! \left(\right. n - k \left.\right) !}\)
- \(a , b\) là các biểu thức hoặc số thực.
- \(n\) là số mũ nguyên không âm (0, 1, 2, ...)
🎯 Ví dụ:
Khai triển \(\left(\right. a + b \left.\right)^{3}\) bằng nhị thức Newton:
\(\left(\right. a + b \left.\right)^{3} = \left(\right. \frac{3}{0} \left.\right) a^{3} b^{0} + \left(\right. \frac{3}{1} \left.\right) a^{2} b^{1} + \left(\right. \frac{3}{2} \left.\right) a^{1} b^{2} + \left(\right. \frac{3}{3} \left.\right) a^{0} b^{3}\) \(= 1 a^{3} + 3 a^{2} b + 3 a b^{2} + 1 b^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}\)
🟨 2. Tam giác Pascal là gì?
Tam giác Pascal là một bảng sắp xếp các hệ số nhị thức \(\left(\right. \frac{n}{k} \left.\right)\) theo hình tam giác. Mỗi số trong tam giác là tổng của hai số phía trên nó.
🔻 Cấu trúc của tam giác Pascal:
1 ← hàng 0
1 1 ← hàng 1
1 2 1 ← hàng 2
1 3 3 1 ← hàng 3
1 4 6 4 1 ← hàng 4
1 5 10 10 5 1 ← hàng 5
...
- Mỗi hàng ứng với khai triển của \(\left(\right. a + b \left.\right)^{n}\)
- Hệ số của \(\left(\right. a + b \left.\right)^{n}\) là các số ở hàng thứ \(n\) của tam giác Pascal.
🎯 Ví dụ ứng dụng:
Dùng tam giác Pascal để khai triển \(\left(\right. x + y \left.\right)^{4}\):
→ Hàng thứ 4 là: 1 4 6 4 1
\(\left(\right. x + y \left.\right)^{4} = 1 x^{4} + 4 x^{3} y + 6 x^{2} y^{2} + 4 x y^{3} + 1 y^{4}\)
✅ Tóm tắt dễ nhớ:
Nội dung | Nhị thức Newton | Tam giác Pascal |
---|---|---|
Khái niệm | Khai triển \(\left(\right. a + b \left.\right)^{n}\)(a+b)n(a + b)^n(a+b)n | Bảng hệ số \(\left(\right. \frac{n}{k} \left.\right)\)(nk)\binom{n}{k}(kn) |
Dạng tổng quát | \(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)(a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k(a+b)n=∑k=0n(kn)an−kbk | Các hệ số nhị thức được sắp xếp theo hình tam giác |
Ứng dụng | Giải toán khai triển, tổ hợp, tính nhanh | Tìm hệ số nhị thức nhanh chóng, ứng dụng trong nhị thức Newton xin 1 tick |

Giải:
A B C H K I
Giải:
Do \(\Delta ABC\) cân tại A có AM là trung tuyến
\(\Rightarrow\)AM cũng là đường cao
\(\Rightarrow AM\perp BC\) tại M (1)
Xét \(\Delta HMB,\Delta KMC\) có:
BM = CM ( gt )
\(\widehat{HBC}=\widehat{KBC}\) ( do t/g ABC cân tại A )
\(\widehat{BHM}=\widehat{CKM}=90^o\)
\(\Rightarrow\Delta HMB=\Delta KMC\) ( c.huyền - g.nhọn )
\(\Rightarrow\widehat{HMB}=\widehat{KMC}\) ( góc t/ứng )
Có: HM // BI \(\Rightarrow\widehat{HMB}=\widehat{MBI}\) ( so le trong )
MK // CI \(\Rightarrow\widehat{KMC}=\widehat{MCI}\) ( so le trong )
\(\Rightarrow\widehat{MBI}=\widehat{MCI}\) hay \(\widehat{CBI}=\widehat{BCI}\)
\(\Rightarrow\Delta BIC\) cân tại I
Mà t/g BIC cân tại I có IM là trung tuyến
\(\Rightarrow\)IM cũng là đường cao
\(\Rightarrow IM\perp BC\) tại M (2)
Từ (1), (2) \(\Rightarrow\)A, M, I thẳng hàng ( đpcm )
Vậy...
các bạn giúp mik làm bằng tự luận