K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Vì tam giác ABC vuông tại A nên A = 90o

Ta có: Góc A + B + C = 180o

=> Góc C = 180o - (A + B) 

               = 180o - (90o + 60o) = 180o - 150o = 30o

Vì góc A > góc B > góc C (90o > 60o > 30o)

Nên BC > AC > AB (mối quan hệ giữa góc và cạnh đối diện) 

24 tháng 4 2017

AB<ÂC<BC

22 tháng 1 2019

Ta có ∠C = 180o - 60o - 30o = 90o

Vì ∠C > ∠A > ∠B ⇒ AB > BC > AC. Chọn C

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Bài 3:

a: Xét ΔAFC vuôngtại F và ΔAED vuông tại E có

AC=AD

góc FAC=góc EAD

=>ΔAFC=ΔAED

=>AF=AE
=>A là trung điểm cua EF

b: DE vuông góc AB

CF vuông góc AB

=>DE//CF

c: Xét tứ giác CFDE có

CF//DE

CF=DE
=>CFDE là hình bình hành

=>CE//DF

19 tháng 6 2018

a. Hình vẽ ( 1 điểm)

Vì ∠A = 60o,B = 70o nên ∠C = 180o - 60o - 70o = 50o ( 1 điểm)

 

Vì C < A < B ⇒ AB < BC < AC ( 1 điểm)

20 tháng 5 2019

a. Hình vẽ ( 1 điểm)

Vì ∠A = 60o,B = 70o nên ∠C = 180o - 60o - 70o = 50o ( 1 điểm)

 

Vì C < A < B ⇒ AB < BC < AC ( 1 điểm)

5 tháng 3 2022

\(\text{1)Vì }\Delta ABC\text{ có }A\text{ là góc tù}\)

\(\Rightarrow A\text{ lớn nhất}\)

\(\text{Vậy }\widehat{A}>\widehat{B}>\widehat{C}\)

\(\Rightarrow BC>AB>AC\)

\(\text{2)Vì }\Delta ABC\text{ vuông tại }A\)

\(\Rightarrow\widehat{A}=90^0\)

\(\text{Xét }\Delta ABK\text{ có:}\)

\(\widehat{A}=90^0\left(cmt\right)\)

\(\Rightarrow\widehat{A}>\widehat{BKA}\)

\(\Rightarrow BK>AB\)

\(\text{Ta có:}\widehat{BKC}=\widehat{ABK}+\widehat{A}\left(\widehat{BKC\text{ là góc ngoài }\Delta}ABD\right)\)

\(\Rightarrow\widehat{BKC}>\widehat{A}\)

\(\Rightarrow\widehat{BKC}>90^0\)

\(\text{Xét }\Delta BKC\text{ có:}\)

\(\widehat{BKC}>90^0\)

\(\Rightarrow\widehat{BKC}>\widehat{C}\)

\(\Rightarrow BC>BK\text{(quan hệ giữa cạnh và góc đối diện trong tam giác)}\)

1: Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

16 tháng 2 2023

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

  • Góc BAC = 90 độ (do tam giác ABC vuông tại A)
  • Góc B = 60 độ (theo đề bài)
  • Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
  • Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
  • Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
  • Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
  • Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

  • AB^2 = AC^2 + BC^2 = a^2 + b^2
  • BC = a
  • AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

17 tháng 2 2023

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

  • Góc BAC = 90 độ (do tam giác ABC vuông tại A)
  • Góc B = 60 độ (theo đề bài)
  • Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
  • Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
  • Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
  • Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
  • Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

  • AB^2 = AC^2 + BC^2 = a^2 + b^2
  • BC = a
  • AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

20 tháng 4 2017

a, Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABC có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow100^0+20^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-100^0-20^0=60^0\)

\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)

Áp dụng quan hệ giữa cạnh và góc đối diện \(\Rightarrow BC>AB>AC\)

b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)