Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 6 8 H E D F K
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^HAC ( cùng phụ với ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)
a) Xét \(\Delta ABH\)có BI là phân giác của \(\widehat{ABH}\)(vì BD là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\frac{IA}{IH}=\frac{BA}{BH}\)(tính chất)
\(\Rightarrow IA.BH=IH.AB\)(diều phải chứng minh)
Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{CBA}\)chung.
\(\Rightarrow\Delta ABC\approx\Delta HBA\left(g.g\right)\)(điều phải chứng minh)
A B C H K M I
a, Xét tam giác BAC và tam giác AHC ta có :
^BAC = ^AHC = 900
^C _ chung
Vậy tam giác BAC ~ tam giác AHC ( g.g )
b, Xét tam giác AHB và tam giác HKA ta có
^BHA = ^HKA = 900
^BAH = ^AHK ( so le trong )
Vậy tam giác AHB = tam giác HKA ( g.g )
\(\Rightarrow\frac{AH}{HK}=\frac{AB}{AH}\)( tỉ số tương ứng ) \(\Rightarrow AH^2=AB.HK\)
hình bạn tự vẽ
a) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)
Vì BD là phân giác của ^ABC nên theo tính chất đường phân giác trong tam giác ta có : AD/AB = CD/BC
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{8}{16}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{AD}{AB}=\frac{1}{2}\\\frac{CD}{BC}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}AD=\frac{1}{2}AB=3cm\\CD=\frac{1}{2}BC=5cm\end{cases}}\)
b) Xét ΔBHA và ΔBAC có :
^B chung
^H = ^A = 900
=> ΔBHA ~ ΔBAC (g.g)
=> BH/BA = HA/AC = AB/BC
=> AB2 = BH.BC ( đpcm )
=> BH = AB2/BC = 36/10 = 3,6cm
=> HC = BC - BH = 10 - 3,6 = 6,4cm
c) Xét ΔBHI và ΔBAD có :
^H = ^A = 900
^HBI = ^ABD ( BD là phân giác của ^B )
=> ΔBHI ~ ΔBAD (g.g)
=> BH/BA = HI/AD = BI/BD
=> HI = AD.BH/AB
Vì ΔAHB vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)
=> HI = AD.BH/AB = 3.3,6/6 = 1,8cm
=> IH.DC = 1,8 . 5 = 9cm ; AD2 = 32 = 9cm
=> IH.DC = AD2 (đpcm)
:)