\(\in\) AC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

A B C M D E

a, - Áp dụng định lý pi - ta go vào tam giác ABC vuông tại A có :

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

- Ta có : AD là phân giác của góc ACB .

=> \(\frac{BA}{AD}=\frac{BC}{DC}\) = \(\frac{6}{AD}=\frac{10}{DC}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{6}{AD}=\frac{10}{DC}=\frac{16}{AC}=\frac{16}{8}=2\)

=> \(\left\{{}\begin{matrix}AD=3\\DC=5\end{matrix}\right.\) ( cm )

1 tháng 3 2020

Tui viết đó nhá,ko phải copy đâu nha !

1 tháng 3 2020

A B C D N M

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)

\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3) 

Xét tam giác ABC có: \(MD//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let) 

\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)

\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)

Xét tam giác ABC có \(ND//AB\left(gt\right)\) 

\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let) 

\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)

\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow ND=MD\) (4)

Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)

c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)

1 tháng 3 2022

a. -Xét △ABC: AD là đường phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)

\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)

\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)

b) -Xét △ABC: DE//AB (gt)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)

Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)

c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)

\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.

\(\Rightarrow AE=DE\)

-Xét △AIE: AP là đường phân giác.

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)

Mà \(AE=DE\left(cmt\right)\)\(AI=BI\) (I là trung điểm AB)

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)

-Xét △QDE: DE//BI.

\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)

Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)