Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a) Vì G là giao điểm của 2 đường Trung tuyến AC và BH nên theo tính chất 3 đường trung tuyến
\(\Rightarrow\frac{AG}{AD}=\frac{2}{3}\)
b) do \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{B}=\widehat{C}\)và \(AB=AC\)
Có AD là đường trung tuyến \(\Rightarrow BD=CD\)
Xét \(\Delta ABD\)và \(\Delta ACD\)ta có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(BD=CD\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
c) \(\Delta ABC\)cân \(\Rightarrow AD\)vừa là đường trung tuyến vừa là đường cao \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta AED\)và \(\Delta AFD\)có :
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(AD\)chung
\(\widehat{E_1}=\widehat{F}_2=\left(90^o\right)\)
\(\Rightarrow\Delta AED=\Delta AFD\left(ch-gn\right)\)
\(\Rightarrow ED=FD\left(dpcm\right)\)
d) Ta có \(BC=12cm\Rightarrow\frac{1}{2}BC=6m\)hay \(BD=CD=6cm\)
Lại có \(AD\)là đường cao ( do \(\Delta ABC\)cân nên vừa là đường trung tuyến vừa là đường cao )
Xét tam giác vuông \(ADC\), áp dụng định lý Py-ta-go , ta được \(AD^2+CD^2=AC^2\Rightarrow AD^2=AC^2-CD^2=10^2-6^2=100-36=64\)
\(\Rightarrow AD=8cm\)
từ a) có tỉ số \(\frac{AG}{AD}=\frac{2}{3}\Rightarrow\frac{AG}{8}=\frac{2}{3}\Rightarrow AG\approx5,4\)
Ta có góc KAB+BAD+DAC+CAH=180 độ
mak KAD=DAH=90 độ và BAD=CAD
=> góc KAB=BAD=DAC=CAH
Ta có góc ngoài 1 đỉnh trong tam giác = tổng 2 góc trong nên=> AK là tia phân giác của góc ngoài đỉnh A của tam giác ABC
Mình ko chắc nhưng nếu có sai bn nhắn lại cho mình
a) Kẻ DE vuông góc AB chứ.
Xét tam giác ACD và tam giác AED có:
góc ACD = góc ECD (CD là phân giác)
CD chung
góc DAC = góc CED = 90 độ
=> Tam giác ACD = tam giác AED(ch+gn)
b)Tam giác ACD = tam giác AED => góc EDC = góc ADC; ED=AD(2 góc, cạnh tương ứng)
Gọi giao điểm AE và DC là I. Xét tam giác DIE và tam giác DIA có:
góc IDE = góc IDA
DE=DA
DI chung
=> Tam giác DIE = tam giác DIA (c+g+c)
=> IE=IA (2 cạnh tương ứng)
=> CD trung tuyến AE
c) Xét tam giác BED vuông tại E có cạnh BD đối diện góc 90 độ
=> BD>DE
Mà DE=DA (chứng minh trên)\
Vậy BD>AD