K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

mà AM là tia phân giác

nên AHMK là hình vuông

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó; AHMK là hình chữ nhật

 

17 tháng 11 2021

câu a mình làm xong rồi nha

17 tháng 11 2021

b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)

Vậy t.giác ABC cân tại A để ABEC là hình thoi

HBH ABEC là hình chữ nhật

<=> A=90 độ (dhnb)

Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật

23 tháng 12 2020

Bn tự vẽ hình nha

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)

Tớ chỉ lm đc câu a thui nếu đúng like cho tớ nhabucminh

 

4 tháng 2 2021

bạn ko biết giải phần b,c à

23 tháng 12 2020

Bn tự vẽ hình nhahiu

a, Xét tứ giác HMKA có

góc MHA= 90 độ( mh ⊥ AB-gt)

góc MKA = 90 độ( MK⊥ AC - gt)

góc HAK = 90 độ( tam giác ABC ⊥ A-gt)

-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)

-> HM song song AK; Hk=MA; HA=MK

ta có

HM song song ak(cmt)

M là trung điểm BC(gt)

-> H là trung điểm BA

-> Bh=HA=1/2 BA

mà HA=MK(cmt)

->BH=MK(1)

Xét tam giác ABC vuông tại A có

AM là đg trung tuyến(gt)

-> AM=MB=MC

mà MA=HK(cmt)

-> HK=BM(2)

Từ (1) và (2)

-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)

Sorry nhe mình ko bít lm câu C

Nếu hai câu trên đúng like cho mình nha >_<

 

 

 

15 tháng 11 2017

a) Tứ giác AHMK là hình chữ nhật vì có ba góc vuông

b)  Ta có MH song song với AC và Mlà tđ của BC nên H là TĐ của AB

Suy ra AH = AB/2 =1,5cm

tương tự :AK = AC/2 = 2cm

AM =HK 2 đường chéo của hcn nên AM=HK=\(\sqrt{6.25}\)

c) H là TĐ của AB và HM vuông góc với AB nên A đối xứng Với B qua HM

16 tháng 12 2023

a: Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)

=>AHMK là hình chữ nhật

=>AM=HK

b: Xét ΔABC có

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

Xét ΔABC có

M,K lần lượt là trung điểm của CB,CA

=>MK là đường trung bình của ΔABC

=>MK//AB và \(MK=\dfrac{AB}{2}\)

Ta có: MK//AB

H\(\in\)AB

Do đó: MK//HB

Ta có: \(MK=\dfrac{AB}{2}\)

\(AH=HB=\dfrac{AB}{2}\)

Do đó: MK=AH=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

c: Gọi O là giao điểm của AM và KH

Ta có: AHMK là hình chữ nhật

=>AM cắt KH tại trung điểm của mỗi đường

=>O là trung điểm của AM và KH

=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)

mà AM=KH

nên OA=OM=OK=OH(1)

Xét ΔAKM có

AF,KO là các đường trung tuyến

AF cắt KO tại D

Do đó: D là trọng tâm của ΔAKM

Xét ΔAKM có

D là trọng tâm

KO là đường trung tuyến

Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)

Xét ΔHAM có

AE,HO là các đường trung tuyến

AE cắt HO tại I

Do đó: I là trọng tâm của ΔHAM

Xét ΔHAM có

HO là đường trung tuyến

I là trọng tâm

Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)

Từ (1),(2),(3) suy ra HI=KD

loading...