K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

A B C H M I K

Không mất tính tổng quát, ta xét M thuộc HC (trường hợp M thuộc HB tương tự)

Tam giác ABC vuông tại A có đường cao AH xuất phát từ đỉnh A nên \(AH=\frac{1}{2}BC\) (1) và AH cũng là đường trung tuyến \(\Rightarrow HC=HB=\frac{1}{2}BC\) (2) và đường phân giác => ^CAH = ^BAH. Từ (1) và (2) suy ra \(\Delta\)AHC vuông cân tại H. Từ đó 

AH = HC và ^ACH = ^HAC = ^BAH. Tới đây tìm cách chứng minh AI = CK(mình chưa biết làm đâu:v). Từ đó suy ra \(\Delta\)HIA = \(\Delta\)HKC. Suy ra ^AHI = ^CHK suy ra ^IHK = ^IHA + ^AHK = ^CHK + ^AHK = 90o => \(\Delta\)IHK vuông tại H (3)

Mặt khác từ  \(\Delta\)HIA = \(\Delta\)HKC suy ra HI =HK suy ra  \(\Delta\)IHK cân tại H (4)

Từ (3) và (4) suy ra đpcm.

P/s: Ko chắc, bác zZz Cool Kid zZz check giúp:v

11 tháng 8 2019

làm đoạn tth thiếu nhé:

cm AI=CK

t/g ABC vuông cân tại A => ABC^=45 độ

t/g BIM có I^=90 độ mà ABC^=45 độ => BMI^=45 độ

=> t/g BIM vuông cân tại I => BI=IM 

Mà tứ giác BIAK có I^=A^=K^=90 độ => tứ giác BIAK là HCN => IM=AK=BI

Mà AB=AC

=> AB-BI=AC-AK

=>  AI=CK 

23 tháng 4 2023

.

 

a: Xét ΔHAB có HI/HA=HK/HB

nên IK//AB

=>IK vuông góc AC

b: Xét ΔCAK có

KI,AH là đường cao

KI cắt AH tại I

=>I là trực tâm

=>AK vuông góc CI

29 tháng 8 2021

Tham khảo: 

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhonabacco-duong-cao-ahgoi-mnik-lan-luot-la-trung-diem-cua-abachbhcachung-minh-tu-giac-mnki-la-hinh-binh-hanh-bchung-min.1671774771661

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

22 tháng 10 2021

a: Ta có: ΔAHB vuông tại H 

mà HI là đường trung tuyến

nên HI=AI

Ta có: ΔAHC vuông tại H 

mà HK là đường trung tuyến

nên HK=AK

Xét ΔKAI và ΔKHI có

KA=KH

IA=IH

KI chung

Do đó: ΔKAI=ΔKHI

Suy ra: \(\widehat{IHK}=90^0\)

23 tháng 10 2021

a) Ta có: ΔAHB vuông tại H (gt)

mà HI là đường trung tuyến (gt)

nên HI=AI

Ta có: ΔAHC vuông tại H 

mà HK là đường trung tuyến

nên HK=AK

Xét ΔKAI và ΔKHI có

KA=KH

IA=IH

KI chung

Do đó: ΔKAI=ΔKHI

Suy ra: ˆIHK=900

b) Bạn sẽ chứng minh mỗi cạnh của tam giác IHK bằng nửa cạnh của tam giác ABC:

có I là trung điểm AB 

=> IA=IB= 1/2 AB (1)

có K là trung điểm AC 

=> KA=KC = 1/2 AC (2) 

xét tam giác ABC => IK là đường trung bình (tự cm) 

=> IK= 1/2 BC (tính chất) (3) 

Từ (1)(2)(3) => IH + HK + IK = 1/2AB+1/2AC +1/2BC 

==> Vậy cvi của tam giác IHK bằng một nửa cvi tam giác ABC 

===== 

studie.hard.today