Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABC và tam giác HBA có :
Góc ABC chung
Góc BAC = góc BHA (=90 độ )
=> ABC đồng dạng HBA
Áp dụng định lý Pytago có BC2=AC2 +AB2 => BC =20
ABC ~ HBA => AC/AH = BC/AB => AH = ACxAB:BC = 9,6
b,Xét tam giác BHA có BM là phân giác => MH:MA=BH:BA(tính chất đường phân giác) (1)
Tương tự,BD là phân giác của BAC => DA:DC=AB:BC. (2)
Mặt khác ,ABC~HBA =>AB:BC= BH:BA (3)
Từ (1) , (2), (3) => MH:MA=DA:DC
c,Gọi E là trung điểm của AC => AE = AC:2 = 8(cm)
Ta có: E là trung điểm AC,NE // AK ( Cùng vuông góc với AC)
=> EN là đường trung bình của tam giác AKC => N là trung điểm CK => AN là đường trung tuyến ứng với cạnh huyền => AN = CK:2.
Mặ khác,Xét AEN và BCA có:
NAE = ABC ( cùng phụ BAH)
AEN = BAC ( =90 độ )
=> AEN ~ BCA (g.g) => AE : AB =AN : BC => 8: 12 = AN : 20 => AN = 40/3
CK = 2x AN =>CK = 40:3x2=20/3
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có
góc HBI=góc ABD
=>ΔBHI đồng dạng với ΔBAD
=>BH/BA=BI/BD
=>BH*BD=BA*BI
a ) .
Xét 2 t/g vuông : ABC và HBA có:
góc B chung
do đó:
t/g ABC đồng dạng t/g HBA ( g - g )
b ) .
Áp dụng đl pytao vào t/g vuông ABC có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
vi t/g ABC đồng dạng t/g HBA
=> \(\dfrac{AC}{HA}=\dfrac{BC}{AB}\Leftrightarrow\dfrac{20}{HA}=\dfrac{25}{15}\Rightarrow HA=20:\dfrac{25}{15}=12\left(cm\right)\)
a/
Xét tg vuông ABC và tg vuông HBA có \(\widehat{ACB}=\widehat{HAB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABC đồng dạng với tg HBA (g.g.g)
b/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=5\sqrt{5}\) (Pitago)
\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông băng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{81}{5\sqrt{5}}=\dfrac{81\sqrt{5}}{25}\)
\(\Rightarrow CH=BC-BH=5\sqrt{5}-\dfrac{81\sqrt{5}}{25}=\dfrac{44\sqrt{5}}{25}\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phường đường cao thuộc cạnh huyền băng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=\dfrac{81\sqrt{5}}{25}.\dfrac{44\sqrt{5}}{25}\) Khai căn ra AH
c/
Xét tg vuông BHI và tg vuông BEC có \(\widehat{CBE}\) chung
=> tg BHI đồng dạng với tg BEC (g.g.g)
\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BE}\Rightarrow BI.BE=BH.BC\left(dpcm\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc ABH=góc CAH
=>ΔABH đồng dạng với ΔCAH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) là góc chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)