Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
A B C H D E
a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)
Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2
=> AC2=64 (cm) => AC2=82 => AC=8 (cm).
b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD
=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)
c) Nối E với D.
Xét \(\Delta\)AHB và \(\Delta\)EHD:
HB=HD
^AHB=^EHD=900 => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)
HA=HE
=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED
Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)
Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC
=> AD \(⊥\)EC (đpcm)
A B C
a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
102 = 62 + AC2
=> AC2 = 100 - 36 = 64
=> AC =8
Áp dụng đ/lí Py ta go cho tam giác ABC vuông ở A ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
= 100
=> BC = \(\sqrt{100}=10\left(Cm\right)\)
b) Xét tam giác DAH và tam giác BAH có:
AH chung
HD = HB
Góc H1 = góc H2
Vậy tam giác DAH = tam giác BAH
=> AD = AB (2 cạnh tương ứng)
dell nha bạn