Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc B=60 độ
=>góc C=30 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>2a/BC=1/2
=>BC=4a
=>AC=2a*căn 3
AH=AB*AC/BC=2a*2a*căn 3/4a=a*căn 3
a) Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin30^0\)
\(=10\cdot\dfrac{1}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=5\cdot5\sqrt{3}=25\sqrt{3}\)
hay \(AH=\dfrac{25\sqrt{3}}{10}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)
\(b,\) Sửa: Tính AH,BH,CH
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\); \(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=1/2
=>BC=12cm
AC=căn 12^2-6^2=6*căn 3(cm)
AH=6*6căn 3/12=3*căn 3(cm)
BH=AB^2/BC=3cm
CH=12-3=9cm
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có : AB = BC x sin C = 10 x sin 600 = \(5\sqrt{3}\) (cm)
AC = \(\sqrt{BC^2-AC^2}=\sqrt{10^2-\left(5\sqrt{3}\right)^2}=5\) (cm)
AH = \(\frac{AB.AC}{BC}=\frac{5.5\sqrt{3}}{10}=\frac{5\sqrt{3}}{2}\) (cm)